terminfo 5 2024-01-13 ncurses 6.4 File formats

terminfo(5)                      File formats                      terminfo(5)




NAME

       terminfo - terminal capability database


SYNOPSIS

       /usr/share/terminfo/*/*


DESCRIPTION

       Terminfo  is  a  database describing terminals, used by screen-oriented
       programs  such  as  nvi(1),  lynx(1),   mutt(1),   and   other   curses
       applications,  using  high-level calls to libraries such as curses(3x).
       It is also used via low-level calls by  non-curses  applications  which
       may  be  screen-oriented  (such  as  clear(1))  or  non-screen (such as
       tabs(1)).

       Terminfo describes terminals by giving a set of capabilities which they
       have, by specifying how to perform screen operations, and by specifying
       padding requirements and initialization sequences.

       This manual describes ncurses version 6.4 (patch 20240113).


terminfo Entry Syntax

       Entries in terminfo consist of a sequence of fields:

       o   Each field ends with a comma "," (embedded commas  may  be  escaped
           with a backslash or written as "\054").

       o   White space between fields is ignored.

       o   The first field in a terminfo entry begins in the first column.

       o   Newlines  and  leading  whitespace (spaces or tabs) may be used for
           formatting entries for readability.  These are removed from  parsed
           entries.

           The  infocmp  -f and -W options rely on this to format if-then-else
           expressions, or  to  enforce  maximum  line-width.   The  resulting
           formatted terminal description can be read by tic.

       o   The  first  field for each terminal gives the names which are known
           for the terminal, separated by "|" characters.

           The first name given  is  the  most  common  abbreviation  for  the
           terminal  (its  primary name), the last name given should be a long
           name fully identifying the terminal  (see  longname(3x)),  and  all
           others  are  treated as synonyms (aliases) for the primary terminal
           name.

           X/Open Curses advises that all names but  the  last  should  be  in
           lower  case  and  contain no blanks; the last name may well contain
           upper case and blanks for readability.

           This implementation is not so strict; it allows mixed case  in  the
           primary name and aliases.  If the last name has no embedded blanks,
           it allows that to be both an alias and a  verbose  name  (but  will
           warn about this ambiguity).

       o   Lines  beginning  with  a  "#"  in  the first column are treated as
           comments.

           While comment lines are valid at any point, the output of captoinfo
           and  infotocap  (aliases  for tic) will move comments so they occur
           only between entries.

       Terminal names (except for the last, verbose entry)  should  be  chosen
       using  the  following  conventions.   The  particular piece of hardware
       making up the terminal should have a root name,  thus  "hp2621".   This
       name should not contain hyphens.  Modes that the hardware can be in, or
       user preferences, should be indicated by appending a hyphen and a  mode
       suffix.   Thus,  a  vt100  in  132-column  mode  would be vt100-w.  The
       following suffixes should be used where possible:

       Suffix   Example     Meaning
       ------------------------------------------------------------------------
       -nn      aaa-60      Number of lines on the screen
       -np      c100-4p     Number of pages of memory
       -am      vt100-am    With automargins (usually the default)
       -m       ansi-m      Mono mode; suppress color
       -mc      wy30-mc     Magic cookie; spaces when highlighting
       -na      c100-na     No arrow keys (leave them in local)
       -nam     vt100-nam   Without automatic margins
       -nl      hp2621-nl   No status line
       -ns      hp2626-ns   No status line
       -rv      c100-rv     Reverse video
       -s       vt100-s     Enable status line
       -vb      wy370-vb    Use visible bell instead of beep
       -w       vt100-w     Wide mode (> 80 columns, usually 132)

       For more on terminal naming conventions, see the term(7) manual page.


terminfo Capabilities Syntax

       The terminfo entry consists of  several  capabilities,  i.e.,  features
       that  the  terminal  has,  or  methods  for  exercising  the terminal's
       features.

       After the first field (giving the name(s) of the terminal entry), there
       should be one or more capability fields.  These are Boolean, numeric or
       string names with corresponding values:

       o   Boolean capabilities are true  when  present,  false  when  absent.
           There is no explicit value for Boolean capabilities.

       o   Numeric  capabilities  have  a  "#"  following  the  name,  then an
           unsigned decimal integer value.

       o   String capabilities have a "=" following the name, then  an  string
           of characters making up the capability value.

           String  capabilities  can be split into multiple lines, just as the
           fields comprising a terminal  entry  can  be  split  into  multiple
           lines.   While  blanks  between fields are ignored, blanks embedded
           within a string value are retained, except for leading blanks on  a
           line.

       Any  capability  can  be  canceled,  i.e., suppressed from the terminal
       entry, by following its name with "@" rather than a capability value.


Similar Terminals

       If there are two very similar  terminals,  one  (the  variant)  can  be
       defined   as  being  just  like  the  other  (the  base)  with  certain
       exceptions.  In the definition of the variant,  the  string  capability
       use can be given with the name of the base terminal:

       o   The  capabilities  given before use override those in the base type
           named by use.

       o   If there are multiple use capabilities, they are merged in  reverse
           order.   That  is,  the rightmost use reference is processed first,
           then the one to its left, and so forth.

       o   Capabilities given explicitly in the entry override  those  brought
           in by use references.

       A  capability  can  be  canceled  by placing xx@ to the left of the use
       reference that imports it, where xx is the  capability.   For  example,
       the entry

              2621-nl, smkx@, rmkx@, use=2621,

       defines a 2621-nl that does not have the smkx or rmkx capabilities, and
       hence does not turn on the function key labels  when  in  visual  mode.
       This  is  useful  for  different modes for a terminal, or for different
       user preferences.

       An entry included via use can contain canceled capabilities, which have
       the  same  effect as if those cancels were inline in the using terminal
       entry.


Predefined Capabilities

       The following is a complete table of the  capabilities  included  in  a
       terminfo  description  block  and available to terminfo-using code.  In
       each line of the table,

       o   The variable is the name by which the programmer (at  the  terminfo
           level) accesses the capability.

       o   The  capname  (Cap-name)  is the short name used in the text of the
           database, and is used by a person updating the database.

           Whenever possible, capnames are chosen to be the same as or similar
           to  the  ANSI X3.64-1979 standard (now superseded by ECMA-48, which
           uses identical or very similar names).  Semantics are also intended
           to match those of the specification.

           Capability  names  have no hard length limit, but an informal limit
           of 5 characters has been adopted to keep them short  and  to  allow
           the tabs in the source file Caps to line up nicely.

       o   The   termcap   (Tcap)  code  is  the  old  capability  name  (some
           capabilities  are  new,  and  have  names  which  termcap  did  not
           originate).

       o   Finally,  the description field attempts to convey the semantics of
           the capability.

       You may find some codes in the description field:

       (P)    indicates that padding may be specified

       #[1-9] in the description field indicates that  the  string  is  passed
              through tparm(3x) with parameters as given (#i).

              If  no  parameters  are  listed  in the description, passing the
              string through tparm(3x) may give unexpected results,  e.g.,  if
              it contains percent (%%) signs.

       (P*)   indicates  that  padding may vary in proportion to the number of
              lines affected

       (#i)   indicates the ith parameter.

                                     Code
       Boolean Capability Name    TI      TC   Description
       ------------------------------------------------------------------------

       auto_left_margin           bw      bw   cub1 wraps from column 0 to
                                               last column
       auto_right_margin          am      am   terminal has automatic margins
       no_esc_ctlc                xsb     xb   beehive (f1=escape, f2=ctrl C)
       ceol_standout_glitch       xhp     xs   standout not erased by
                                               overwriting (hp)
       eat_newline_glitch         xenl    xn   newline ignored after 80 cols
                                               (concept)
       erase_overstrike           eo      eo   can erase overstrikes with a
                                               blank
       generic_type               gn      gn   generic line type
       hard_copy                  hc      hc   hardcopy terminal
       has_meta_key               km      km   Has a meta key (i.e., sets 8th-
                                               bit)
       has_status_line            hs      hs   has extra status line
       insert_null_glitch         in      in   insert mode distinguishes nulls
       memory_above               da      da   display may be retained above
                                               the screen
       memory_below               db      db   display may be retained below
                                               the screen
       move_insert_mode           mir     mi   safe to move while in insert
                                               mode
       move_standout_mode         msgr    ms   safe to move while in standout
                                               mode
       over_strike                os      os   terminal can overstrike
       status_line_esc_ok         eslok   es   escape can be used on the
                                               status line
       dest_tabs_magic_smso       xt      xt   tabs destructive, magic so char
                                               (t1061)
       tilde_glitch               hz      hz   cannot print ~'s (Hazeltine)
       transparent_underline      ul      ul   underline character overstrikes
       xon_xoff                   xon     xo   terminal uses xon/xoff
                                               handshaking
       needs_xon_xoff             nxon    nx   padding will not work, xon/xoff
                                               required
       prtr_silent                mc5i    5i   printer will not echo on screen
       hard_cursor                chts    HC   cursor is hard to see
       non_rev_rmcup              nrrmc   NR   smcup does not reverse rmcup
       no_pad_char                npc     NP   pad character does not exist
       non_dest_scroll_region     ndscr   ND   scrolling region is non-
                                               destructive
       can_change                 ccc     cc   terminal can re-define existing
                                               colors
       back_color_erase           bce     ut   screen erased with background
                                               color
       hue_lightness_saturation   hls     hl   terminal uses only HLS color
                                               notation (Tektronix)
       col_addr_glitch            xhpa    YA   only positive motion for
                                               hpa/mhpa caps
       cr_cancels_micro_mode      crxm    YB   using cr turns off micro mode
       has_print_wheel            daisy   YC   printer needs operator to
                                               change character set
       row_addr_glitch            xvpa    YD   only positive motion for
                                               vpa/mvpa caps
       semi_auto_right_margin     sam     YE   printing in last column causes
                                               cr
       cpi_changes_res            cpix    YF   changing character pitch
                                               changes resolution
       lpi_changes_res            lpix    YG   changing line pitch changes
                                               resolution

                                    Code
       Numeric Capability Name   TI       TC   Description
       ------------------------------------------------------------------------
       columns                   cols     co   number of columns in a line

       init_tabs                 it       it   tabs initially every # spaces
       lines                     lines    li   number of lines on screen or
                                               page
       lines_of_memory           lm       lm   lines of memory if > line. 0
                                               means varies
       magic_cookie_glitch       xmc      sg   number of blank characters left
                                               by smso or rmso
       padding_baud_rate         pb       pb   lowest baud rate where padding
                                               needed
       virtual_terminal          vt       vt   virtual terminal number
                                               (CB/unix)
       width_status_line         wsl      ws   number of columns in status
                                               line
       num_labels                nlab     Nl   number of labels on screen
       label_height              lh       lh   rows in each label
       label_width               lw       lw   columns in each label
       max_attributes            ma       ma   maximum combined attributes
                                               terminal can handle
       maximum_windows           wnum     MW   maximum number of definable
                                               windows
       max_colors                colors   Co   maximum number of colors on
                                               screen
       max_pairs                 pairs    pa   maximum number of color-pairs
                                               on the screen
       no_color_video            ncv      NC   video attributes that cannot be
                                               used with colors

       The following numeric capabilities  are  present  in  the  SVr4.0  term
       structure,  but  are  not yet documented in the man page.  They came in
       with SVr4's printer support.

                                    Code
       Numeric Capability Name   TI       TC   Description
       ------------------------------------------------------------------------
       buffer_capacity           bufsz    Ya   numbers of bytes buffered
                                               before printing
       dot_vert_spacing          spinv    Yb   spacing of pins vertically in
                                               pins per inch
       dot_horz_spacing          spinh    Yc   spacing of dots horizontally in
                                               dots per inch
       max_micro_address         maddr    Yd   maximum value in
                                               micro_..._address
       max_micro_jump            mjump    Ye   maximum value in parm_..._micro
       micro_col_size            mcs      Yf   character step size when in
                                               micro mode
       micro_line_size           mls      Yg   line step size when in micro
                                               mode
       number_of_pins            npins    Yh   numbers of pins in print-head
       output_res_char           orc      Yi   horizontal resolution in units
                                               per line
       output_res_line           orl      Yj   vertical resolution in units
                                               per line
       output_res_horz_inch      orhi     Yk   horizontal resolution in units
                                               per inch
       output_res_vert_inch      orvi     Yl   vertical resolution in units
                                               per inch
       print_rate                cps      Ym   print rate in characters per
                                               second
       wide_char_size            widcs    Yn   character step size when in
                                               double wide mode
       buttons                   btns     BT   number of buttons on mouse
       bit_image_entwining       bitwin   Yo   number of passes for each bit-
                                               image row
       bit_image_type            bitype   Yp   type of bit-image device

                                      Code

       String Capability Name      TI       TC   Description
       ------------------------------------------------------------------------
       back_tab                    cbt      bt   back tab (P)
       bell                        bel      bl   audible signal (bell) (P)
       carriage_return             cr       cr   carriage return (P*) (P*)
       change_scroll_region        csr      cs   change region to line #1 to
                                                 line #2 (P)
       clear_all_tabs              tbc      ct   clear all tab stops (P)
       clear_screen                clear    cl   clear screen and home cursor
                                                 (P*)
       clr_eol                     el       ce   clear to end of line (P)
       clr_eos                     ed       cd   clear to end of screen (P*)
       column_address              hpa      ch   horizontal position #1,
                                                 absolute (P)
       command_character           cmdch    CC   terminal settable cmd
                                                 character in prototype !?
       cursor_address              cup      cm   move to row #1 columns #2
       cursor_down                 cud1     do   down one line
       cursor_home                 home     ho   home cursor (if no cup)
       cursor_invisible            civis    vi   make cursor invisible
       cursor_left                 cub1     le   move left one space
       cursor_mem_address          mrcup    CM   memory relative cursor
                                                 addressing, move to row #1
                                                 columns #2
       cursor_normal               cnorm    ve   make cursor appear normal
                                                 (undo civis/cvvis)
       cursor_right                cuf1     nd   non-destructive space (move
                                                 right one space)
       cursor_to_ll                ll       ll   last line, first column (if
                                                 no cup)
       cursor_up                   cuu1     up   up one line
       cursor_visible              cvvis    vs   make cursor very visible
       delete_character            dch1     dc   delete character (P*)
       delete_line                 dl1      dl   delete line (P*)
       dis_status_line             dsl      ds   disable status line
       down_half_line              hd       hd   half a line down
       enter_alt_charset_mode      smacs    as   start alternate character set
                                                 (P)
       enter_blink_mode            blink    mb   turn on blinking
       enter_bold_mode             bold     md   turn on bold (extra bright)
                                                 mode
       enter_ca_mode               smcup    ti   string to start programs
                                                 using cup
       enter_delete_mode           smdc     dm   enter delete mode
       enter_dim_mode              dim      mh   turn on half-bright mode
       enter_insert_mode           smir     im   enter insert mode
       enter_secure_mode           invis    mk   turn on blank mode
                                                 (characters invisible)
       enter_protected_mode        prot     mp   turn on protected mode
       enter_reverse_mode          rev      mr   turn on reverse video mode
       enter_standout_mode         smso     so   begin standout mode
       enter_underline_mode        smul     us   begin underline mode
       erase_chars                 ech      ec   erase #1 characters (P)
       exit_alt_charset_mode       rmacs    ae   end alternate character set
                                                 (P)
       exit_attribute_mode         sgr0     me   turn off all attributes
       exit_ca_mode                rmcup    te   strings to end programs using
                                                 cup
       exit_delete_mode            rmdc     ed   end delete mode
       exit_insert_mode            rmir     ei   exit insert mode
       exit_standout_mode          rmso     se   exit standout mode
       exit_underline_mode         rmul     ue   exit underline mode
       flash_screen                flash    vb   visible bell (may not move
                                                 cursor)


       form_feed                   ff       ff   hardcopy terminal page eject
                                                 (P*)
       from_status_line            fsl      fs   return from status line
       init_1string                is1      i1   initialization string
       init_2string                is2      is   initialization string
       init_3string                is3      i3   initialization string
       init_file                   if       if   name of initialization file
       insert_character            ich1     ic   insert character (P)
       insert_line                 il1      al   insert line (P*)
       insert_padding              ip       ip   insert padding after inserted
                                                 character
       key_backspace               kbs      kb   backspace key
       key_catab                   ktbc     ka   clear-all-tabs key
       key_clear                   kclr     kC   clear-screen or erase key
       key_ctab                    kctab    kt   clear-tab key
       key_dc                      kdch1    kD   delete-character key
       key_dl                      kdl1     kL   delete-line key
       key_down                    kcud1    kd   down-arrow key
       key_eic                     krmir    kM   sent by rmir or smir in
                                                 insert mode
       key_eol                     kel      kE   clear-to-end-of-line key
       key_eos                     ked      kS   clear-to-end-of-screen key
       key_f0                      kf0      k0   F0 function key
       key_f1                      kf1      k1   F1 function key
       key_f10                     kf10     k;   F10 function key
       key_f2                      kf2      k2   F2 function key
       key_f3                      kf3      k3   F3 function key
       key_f4                      kf4      k4   F4 function key
       key_f5                      kf5      k5   F5 function key
       key_f6                      kf6      k6   F6 function key
       key_f7                      kf7      k7   F7 function key
       key_f8                      kf8      k8   F8 function key
       key_f9                      kf9      k9   F9 function key
       key_home                    khome    kh   home key
       key_ic                      kich1    kI   insert-character key
       key_il                      kil1     kA   insert-line key
       key_left                    kcub1    kl   left-arrow key
       key_ll                      kll      kH   lower-left key (home down)
       key_npage                   knp      kN   next-page key
       key_ppage                   kpp      kP   previous-page key
       key_right                   kcuf1    kr   right-arrow key
       key_sf                      kind     kF   scroll-forward key
       key_sr                      kri      kR   scroll-backward key
       key_stab                    khts     kT   set-tab key
       key_up                      kcuu1    ku   up-arrow key
       keypad_local                rmkx     ke   leave keyboard transmit mode
       keypad_xmit                 smkx     ks   enter keyboard transmit mode
       lab_f0                      lf0      l0   label on function key f0 if
                                                 not f0
       lab_f1                      lf1      l1   label on function key f1 if
                                                 not f1
       lab_f10                     lf10     la   label on function key f10 if
                                                 not f10
       lab_f2                      lf2      l2   label on function key f2 if
                                                 not f2
       lab_f3                      lf3      l3   label on function key f3 if
                                                 not f3
       lab_f4                      lf4      l4   label on function key f4 if
                                                 not f4
       lab_f5                      lf5      l5   label on function key f5 if
                                                 not f5
       lab_f6                      lf6      l6   label on function key f6 if
                                                 not f6
       lab_f7                      lf7      l7   label on function key f7 if
                                                 not f7

       lab_f8                      lf8      l8   label on function key f8 if
                                                 not f8
       lab_f9                      lf9      l9   label on function key f9 if
                                                 not f9
       meta_off                    rmm      mo   turn off meta mode
       meta_on                     smm      mm   turn on meta mode (8th-bit
                                                 on)
       newline                     nel      nw   newline (behave like cr
                                                 followed by lf)
       pad_char                    pad      pc   padding char (instead of
                                                 null)
       parm_dch                    dch      DC   delete #1 characters (P*)
       parm_delete_line            dl       DL   delete #1 lines (P*)
       parm_down_cursor            cud      DO   down #1 lines (P*)
       parm_ich                    ich      IC   insert #1 characters (P*)
       parm_index                  indn     SF   scroll forward #1 lines (P)
       parm_insert_line            il       AL   insert #1 lines (P*)
       parm_left_cursor            cub      LE   move #1 characters to the
                                                 left (P)
       parm_right_cursor           cuf      RI   move #1 characters to the
                                                 right (P*)
       parm_rindex                 rin      SR   scroll back #1 lines (P)
       parm_up_cursor              cuu      UP   up #1 lines (P*)
       pkey_key                    pfkey    pk   program function key #1 to
                                                 type string #2
       pkey_local                  pfloc    pl   program function key #1 to
                                                 execute string #2
       pkey_xmit                   pfx      px   program function key #1 to
                                                 transmit string #2
       print_screen                mc0      ps   print contents of screen
       prtr_off                    mc4      pf   turn off printer
       prtr_on                     mc5      po   turn on printer
       repeat_char                 rep      rp   repeat char #1 #2 times (P*)
       reset_1string               rs1      r1   reset string
       reset_2string               rs2      r2   reset string
       reset_3string               rs3      r3   reset string
       reset_file                  rf       rf   name of reset file
       restore_cursor              rc       rc   restore cursor to position of
                                                 last save_cursor
       row_address                 vpa      cv   vertical position #1 absolute
                                                 (P)
       save_cursor                 sc       sc   save current cursor position
                                                 (P)
       scroll_forward              ind      sf   scroll text up (P)
       scroll_reverse              ri       sr   scroll text down (P)
       set_attributes              sgr      sa   define video attributes #1-#9
                                                 (PG9)
       set_tab                     hts      st   set a tab in every row,
                                                 current columns
       set_window                  wind     wi   current window is lines #1-#2
                                                 cols #3-#4
       tab                         ht       ta   tab to next 8-space hardware
                                                 tab stop
       to_status_line              tsl      ts   move to status line, column
                                                 #1
       underline_char              uc       uc   underline char and move past
                                                 it
       up_half_line                hu       hu   half a line up
       init_prog                   iprog    iP   path name of program for
                                                 initialization
       key_a1                      ka1      K1   upper left of keypad
       key_a3                      ka3      K3   upper right of keypad
       key_b2                      kb2      K2   center of keypad
       key_c1                      kc1      K4   lower left of keypad
       key_c3                      kc3      K5   lower right of keypad

       prtr_non                    mc5p     pO   turn on printer for #1 bytes
       char_padding                rmp      rP   like ip but when in insert
                                                 mode
       acs_chars                   acsc     ac   graphics charset pairs, based
                                                 on vt100
       plab_norm                   pln      pn   program label #1 to show
                                                 string #2
       key_btab                    kcbt     kB   back-tab key
       enter_xon_mode              smxon    SX   turn on xon/xoff handshaking
       exit_xon_mode               rmxon    RX   turn off xon/xoff handshaking
       enter_am_mode               smam     SA   turn on automatic margins
       exit_am_mode                rmam     RA   turn off automatic margins
       xon_character               xonc     XN   XON character
       xoff_character              xoffc    XF   XOFF character
       ena_acs                     enacs    eA   enable alternate char set
       label_on                    smln     LO   turn on soft labels
       label_off                   rmln     LF   turn off soft labels
       key_beg                     kbeg     @1   begin key
       key_cancel                  kcan     @2   cancel key
       key_close                   kclo     @3   close key
       key_command                 kcmd     @4   command key
       key_copy                    kcpy     @5   copy key
       key_create                  kcrt     @6   create key
       key_end                     kend     @7   end key
       key_enter                   kent     @8   enter/send key
       key_exit                    kext     @9   exit key
       key_find                    kfnd     @0   find key
       key_help                    khlp     %1   help key
       key_mark                    kmrk     %2   mark key
       key_message                 kmsg     %3   message key
       key_move                    kmov     %4   move key
       key_next                    knxt     %5   next key
       key_open                    kopn     %6   open key
       key_options                 kopt     %7   options key
       key_previous                kprv     %8   previous key
       key_print                   kprt     %9   print key
       key_redo                    krdo     %0   redo key
       key_reference               kref     &1   reference key
       key_refresh                 krfr     &2   refresh key
       key_replace                 krpl     &3   replace key
       key_restart                 krst     &4   restart key
       key_resume                  kres     &5   resume key
       key_save                    ksav     &6   save key
       key_suspend                 kspd     &7   suspend key
       key_undo                    kund     &8   undo key
       key_sbeg                    kBEG     &9   shifted begin key
       key_scancel                 kCAN     &0   shifted cancel key
       key_scommand                kCMD     *1   shifted command key
       key_scopy                   kCPY     *2   shifted copy key
       key_screate                 kCRT     *3   shifted create key
       key_sdc                     kDC      *4   shifted delete-character key
       key_sdl                     kDL      *5   shifted delete-line key
       key_select                  kslt     *6   select key
       key_send                    kEND     *7   shifted end key
       key_seol                    kEOL     *8   shifted clear-to-end-of-line
                                                 key
       key_sexit                   kEXT     *9   shifted exit key
       key_sfind                   kFND     *0   shifted find key
       key_shelp                   kHLP     #1   shifted help key
       key_shome                   kHOM     #2   shifted home key
       key_sic                     kIC      #3   shifted insert-character key
       key_sleft                   kLFT     #4   shifted left-arrow key
       key_smessage                kMSG     %a   shifted message key
       key_smove                   kMOV     %b   shifted move key
       key_snext                   kNXT     %c   shifted next key

       key_soptions                kOPT     %d   shifted options key
       key_sprevious               kPRV     %e   shifted previous key
       key_sprint                  kPRT     %f   shifted print key
       key_sredo                   kRDO     %g   shifted redo key
       key_sreplace                kRPL     %h   shifted replace key
       key_sright                  kRIT     %i   shifted right-arrow key
       key_srsume                  kRES     %j   shifted resume key
       key_ssave                   kSAV     !1   shifted save key
       key_ssuspend                kSPD     !2   shifted suspend key
       key_sundo                   kUND     !3   shifted undo key
       req_for_input               rfi      RF   send next input char (for
                                                 ptys)
       key_f11                     kf11     F1   F11 function key
       key_f12                     kf12     F2   F12 function key
       key_f13                     kf13     F3   F13 function key
       key_f14                     kf14     F4   F14 function key
       key_f15                     kf15     F5   F15 function key
       key_f16                     kf16     F6   F16 function key
       key_f17                     kf17     F7   F17 function key
       key_f18                     kf18     F8   F18 function key
       key_f19                     kf19     F9   F19 function key
       key_f20                     kf20     FA   F20 function key
       key_f21                     kf21     FB   F21 function key
       key_f22                     kf22     FC   F22 function key
       key_f23                     kf23     FD   F23 function key
       key_f24                     kf24     FE   F24 function key
       key_f25                     kf25     FF   F25 function key
       key_f26                     kf26     FG   F26 function key
       key_f27                     kf27     FH   F27 function key
       key_f28                     kf28     FI   F28 function key
       key_f29                     kf29     FJ   F29 function key
       key_f30                     kf30     FK   F30 function key
       key_f31                     kf31     FL   F31 function key
       key_f32                     kf32     FM   F32 function key
       key_f33                     kf33     FN   F33 function key
       key_f34                     kf34     FO   F34 function key
       key_f35                     kf35     FP   F35 function key
       key_f36                     kf36     FQ   F36 function key
       key_f37                     kf37     FR   F37 function key
       key_f38                     kf38     FS   F38 function key
       key_f39                     kf39     FT   F39 function key
       key_f40                     kf40     FU   F40 function key
       key_f41                     kf41     FV   F41 function key
       key_f42                     kf42     FW   F42 function key
       key_f43                     kf43     FX   F43 function key
       key_f44                     kf44     FY   F44 function key
       key_f45                     kf45     FZ   F45 function key
       key_f46                     kf46     Fa   F46 function key
       key_f47                     kf47     Fb   F47 function key
       key_f48                     kf48     Fc   F48 function key
       key_f49                     kf49     Fd   F49 function key
       key_f50                     kf50     Fe   F50 function key
       key_f51                     kf51     Ff   F51 function key
       key_f52                     kf52     Fg   F52 function key
       key_f53                     kf53     Fh   F53 function key
       key_f54                     kf54     Fi   F54 function key
       key_f55                     kf55     Fj   F55 function key
       key_f56                     kf56     Fk   F56 function key
       key_f57                     kf57     Fl   F57 function key
       key_f58                     kf58     Fm   F58 function key
       key_f59                     kf59     Fn   F59 function key
       key_f60                     kf60     Fo   F60 function key
       key_f61                     kf61     Fp   F61 function key
       key_f62                     kf62     Fq   F62 function key
       key_f63                     kf63     Fr   F63 function key

       clr_bol                     el1      cb   Clear to beginning of line
       clear_margins               mgc      MC   clear right and left soft
                                                 margins
       set_left_margin             smgl     ML   set left soft margin at
                                                 current column. (ML is not in
                                                 BSD termcap).
       set_right_margin            smgr     MR   set right soft margin at
                                                 current column
       label_format                fln      Lf   label format
       set_clock                   sclk     SC   set clock, #1 hrs #2 mins #3
                                                 secs
       display_clock               dclk     DK   display clock
       remove_clock                rmclk    RC   remove clock
       create_window               cwin     CW   define a window #1 from #2,#3
                                                 to #4,#5
       goto_window                 wingo    WG   go to window #1
       hangup                      hup      HU   hang-up phone
       dial_phone                  dial     DI   dial number #1
       quick_dial                  qdial    QD   dial number #1 without
                                                 checking
       tone                        tone     TO   select touch tone dialing
       pulse                       pulse    PU   select pulse dialing
       flash_hook                  hook     fh   flash switch hook
       fixed_pause                 pause    PA   pause for 2-3 seconds
       wait_tone                   wait     WA   wait for dial-tone
       user0                       u0       u0   User string #0
       user1                       u1       u1   User string #1
       user2                       u2       u2   User string #2
       user3                       u3       u3   User string #3
       user4                       u4       u4   User string #4
       user5                       u5       u5   User string #5
       user6                       u6       u6   User string #6
       user7                       u7       u7   User string #7
       user8                       u8       u8   User string #8
       user9                       u9       u9   User string #9
       orig_pair                   op       op   Set default pair to its
                                                 original value
       orig_colors                 oc       oc   Set all color pairs to the
                                                 original ones
       initialize_color            initc    Ic   initialize color #1 to
                                                 (#2,#3,#4)
       initialize_pair             initp    Ip   Initialize color pair #1 to
                                                 fg=(#2,#3,#4), bg=(#5,#6,#7)
       set_color_pair              scp      sp   Set current color pair to #1
       set_foreground              setf     Sf   Set foreground color #1
       set_background              setb     Sb   Set background color #1
       change_char_pitch           cpi      ZA   Change number of characters
                                                 per inch to #1
       change_line_pitch           lpi      ZB   Change number of lines per
                                                 inch to #1
       change_res_horz             chr      ZC   Change horizontal resolution
                                                 to #1
       change_res_vert             cvr      ZD   Change vertical resolution to
                                                 #1
       define_char                 defc     ZE   Define a character #1, #2
                                                 dots wide, descender #3
       enter_doublewide_mode       swidm    ZF   Enter double-wide mode
       enter_draft_quality         sdrfq    ZG   Enter draft-quality mode
       enter_italics_mode          sitm     ZH   Enter italic mode
       enter_leftward_mode         slm      ZI   Start leftward carriage
                                                 motion
       enter_micro_mode            smicm    ZJ   Start micro-motion mode
       enter_near_letter_quality   snlq     ZK   Enter NLQ mode
       enter_normal_quality        snrmq    ZL   Enter normal-quality mode
       enter_shadow_mode           sshm     ZM   Enter shadow-print mode

       enter_subscript_mode        ssubm    ZN   Enter subscript mode
       enter_superscript_mode      ssupm    ZO   Enter superscript mode
       enter_upward_mode           sum      ZP   Start upward carriage motion
       exit_doublewide_mode        rwidm    ZQ   End double-wide mode
       exit_italics_mode           ritm     ZR   End italic mode
       exit_leftward_mode          rlm      ZS   End left-motion mode
       exit_micro_mode             rmicm    ZT   End micro-motion mode
       exit_shadow_mode            rshm     ZU   End shadow-print mode
       exit_subscript_mode         rsubm    ZV   End subscript mode
       exit_superscript_mode       rsupm    ZW   End superscript mode
       exit_upward_mode            rum      ZX   End reverse character motion
       micro_column_address        mhpa     ZY   Like column_address in micro
                                                 mode
       micro_down                  mcud1    ZZ   Like cursor_down in micro
                                                 mode
       micro_left                  mcub1    Za   Like cursor_left in micro
                                                 mode
       micro_right                 mcuf1    Zb   Like cursor_right in micro
                                                 mode
       micro_row_address           mvpa     Zc   Like row_address #1 in micro
                                                 mode
       micro_up                    mcuu1    Zd   Like cursor_up in micro mode
       order_of_pins               porder   Ze   Match software bits to print-
                                                 head pins
       parm_down_micro             mcud     Zf   Like parm_down_cursor in
                                                 micro mode
       parm_left_micro             mcub     Zg   Like parm_left_cursor in
                                                 micro mode
       parm_right_micro            mcuf     Zh   Like parm_right_cursor in
                                                 micro mode
       parm_up_micro               mcuu     Zi   Like parm_up_cursor in micro
                                                 mode
       select_char_set             scs      Zj   Select character set, #1
       set_bottom_margin           smgb     Zk   Set bottom margin at current
                                                 line
       set_bottom_margin_parm      smgbp    Zl   Set bottom margin at line #1
                                                 or (if smgtp is not given) #2
                                                 lines from bottom
       set_left_margin_parm        smglp    Zm   Set left (right) margin at
                                                 column #1
       set_right_margin_parm       smgrp    Zn   Set right margin at column #1
       set_top_margin              smgt     Zo   Set top margin at current
                                                 line
       set_top_margin_parm         smgtp    Zp   Set top (bottom) margin at
                                                 row #1
       start_bit_image             sbim     Zq   Start printing bit image
                                                 graphics
       start_char_set_def          scsd     Zr   Start character set
                                                 definition #1, with #2
                                                 characters in the set
       stop_bit_image              rbim     Zs   Stop printing bit image
                                                 graphics
       stop_char_set_def           rcsd     Zt   End definition of character
                                                 set #1
       subscript_characters        subcs    Zu   List of subscriptable
                                                 characters
       superscript_characters      supcs    Zv   List of superscriptable
                                                 characters
       these_cause_cr              docr     Zw   Printing any of these
                                                 characters causes CR
       zero_motion                 zerom    Zx   No motion for subsequent
                                                 character

       The following string  capabilities  are  present  in  the  SVr4.0  term
       structure, but were originally not documented in the man page.

                                       Code
       String Capability Name      TI         TC   Description
       ------------------------------------------------------------------------
       char_set_names              csnm       Zy   Produce #1'th item from
                                                   list of character set names
       key_mouse                   kmous      Km   Mouse event has occurred
       mouse_info                  minfo      Mi   Mouse status information
       req_mouse_pos               reqmp      RQ   Request mouse position
       get_mouse                   getm       Gm   Curses should get button
                                                   events, parameter #1 not
                                                   documented.
       set_a_foreground            setaf      AF   Set foreground color to #1,
                                                   using ANSI escape
       set_a_background            setab      AB   Set background color to #1,
                                                   using ANSI escape
       pkey_plab                   pfxl       xl   Program function key #1 to
                                                   type string #2 and show
                                                   string #3
       device_type                 devt       dv   Indicate language, codeset
                                                   support
       code_set_init               csin       ci   Init sequence for multiple
                                                   codesets
       set0_des_seq                s0ds       s0   Shift to codeset 0 (EUC set
                                                   0, ASCII)
       set1_des_seq                s1ds       s1   Shift to codeset 1
       set2_des_seq                s2ds       s2   Shift to codeset 2
       set3_des_seq                s3ds       s3   Shift to codeset 3
       set_lr_margin               smglr      ML   Set both left and right
                                                   margins to #1, #2.  (ML is
                                                   not in BSD termcap).
       set_tb_margin               smgtb      MT   Sets both top and bottom
                                                   margins to #1, #2
       bit_image_repeat            birep      Xy   Repeat bit image cell #1 #2
                                                   times
       bit_image_newline           binel      Zz   Move to next row of the bit
                                                   image
       bit_image_carriage_return   bicr       Yv   Move to beginning of same
                                                   row
       color_names                 colornm    Yw   Give name for color #1
       define_bit_image_region     defbi      Yx   Define rectangular bit
                                                   image region
       end_bit_image_region        endbi      Yy   End a bit-image region
       set_color_band              setcolor   Yz   Change to ribbon color #1
       set_page_length             slines     YZ   Set page length to #1 lines
       display_pc_char             dispc      S1   Display PC character #1
       enter_pc_charset_mode       smpch      S2   Enter PC character display
                                                   mode
       exit_pc_charset_mode        rmpch      S3   Exit PC character display
                                                   mode
       enter_scancode_mode         smsc       S4   Enter PC scancode mode
       exit_scancode_mode          rmsc       S5   Exit PC scancode mode
       pc_term_options             pctrm      S6   PC terminal options
       scancode_escape             scesc      S7   Escape for scancode
                                                   emulation
       alt_scancode_esc            scesa      S8   Alternate escape for
                                                   scancode emulation

       The XSI Curses standard added these hardcopy capabilities.   They  were
       used  in  some  post-4.1 versions of System V curses, e.g., Solaris 2.5
       and IRIX 6.x.  Except for YI, the ncurses termcap names  for  them  are
       invented.   According  to the XSI Curses standard, they have no termcap
       names.  If your compiled terminfo entries use these, they  may  not  be
       binary-compatible with System V terminfo entries after SVr4.1; beware!

                                      Code

       String Capability Name     TI        TC   Description
       ------------------------------------------------------------------------
       enter_horizontal_hl_mode   ehhlm     Xh   Enter horizontal highlight
                                                 mode
       enter_left_hl_mode         elhlm     Xl   Enter left highlight mode
       enter_low_hl_mode          elohlm    Xo   Enter low highlight mode
       enter_right_hl_mode        erhlm     Xr   Enter right highlight mode
       enter_top_hl_mode          ethlm     Xt   Enter top highlight mode
       enter_vertical_hl_mode     evhlm     Xv   Enter vertical highlight mode
       set_a_attributes           sgr1      sA   Define second set of video
                                                 attributes #1-#6
       set_pglen_inch             slength   YI   Set page length to #1
                                                 hundredth of an inch (some
                                                 implementations use sL for
                                                 termcap).


User-Defined Capabilities

       The preceding section listed the predefined  capabilities.   They  deal
       with  some special features for terminals no longer (or possibly never)
       produced.  Occasionally there are special features of  newer  terminals
       which  are awkward or impossible to represent by reusing the predefined
       capabilities.

       ncurses   addresses   this   limitation   by   allowing    user-defined
       capabilities.   The  tic and infocmp programs provide the -x option for
       this purpose.  When -x is set, tic treats unknown capabilities as user-
       defined.   That  is,  if tic encounters a capability name which it does
       not recognize, it infers its type (Boolean, number or string) from  the
       syntax  and  makes  an  extended  table entry for that capability.  The
       use_extended_names(3x) function makes  this  information  conditionally
       available  to  applications.   The  ncurses  library  provides the data
       leaving most of the behavior to applications:

       o   User-defined capability strings whose  name  begins  with  "k"  are
           treated as function keys.

       o   The  types  (Boolean,  number,  string)  determined  by  tic can be
           inferred by successful calls on tigetflag, etc.

       o   If the capability name happens to be two characters, the capability
           is also available through the termcap interface.

       While  termcap  is  said  to  be  extensible  because it does not use a
       predefined set of capabilities, in practice it has been limited to  the
       capabilities  defined  by  terminfo  implementations.  As a rule, user-
       defined capabilities intended for use by termcap applications should be
       limited  to  Booleans  and  numbers to avoid running past the 1023 byte
       limit assumed by termcap implementations and  their  applications.   In
       particular,  providing  extended  sets  of  function  keys (past the 60
       numbered keys and the handful of special named keys) is best done using
       the longer names available using terminfo.

       The  ncurses  library uses a few of these user-defined capabilities, as
       described in user_caps(5).  Other user-defined capabilities  (including
       function  keys)  are described in the terminal database, in the section
       on NCURSES USER-DEFINABLE CAPABILITIES


A Sample Entry

       The  following  entry,  describing  an   ANSI-standard   terminal,   is
       representative of what a terminfo entry for a modern terminal typically
       looks like.

       ansi|ansi/pc-term compatible with color,
               am, mc5i, mir, msgr,
               colors#8, cols#80, it#8, lines#24, ncv#3, pairs#64,
               acsc=+\020\,\021-\030.^Y0\333`\004a\261f\370g\361h\260
                    j\331k\277l\332m\300n\305o~p\304q\304r\304s_t\303
                    u\264v\301w\302x\263y\363z\362{\343|\330}\234~\376,
               bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z, clear=\E[H\E[J,
               cr=^M, cub=\E[%p1%dD, cub1=\E[D, cud=\E[%p1%dB, cud1=\E[B,
               cuf=\E[%p1%dC, cuf1=\E[C, cup=\E[%i%p1%d;%p2%dH,
               cuu=\E[%p1%dA, cuu1=\E[A, dch=\E[%p1%dP, dch1=\E[P,
               dl=\E[%p1%dM, dl1=\E[M, ech=\E[%p1%dX, ed=\E[J, el=\E[K,
               el1=\E[1K, home=\E[H, hpa=\E[%i%p1%dG, ht=\E[I, hts=\EH,
               ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=^J,
               indn=\E[%p1%dS, invis=\E[8m, kbs=^H, kcbt=\E[Z, kcub1=\E[D,
               kcud1=\E[B, kcuf1=\E[C, kcuu1=\E[A, khome=\E[H, kich1=\E[L,
               mc4=\E[4i, mc5=\E[5i, nel=\r\E[S, op=\E[39;49m,
               rep=%p1%c\E[%p2%{1}%-%db, rev=\E[7m, rin=\E[%p1%dT,
               rmacs=\E[10m, rmpch=\E[10m, rmso=\E[m, rmul=\E[m,
               s0ds=\E(B, s1ds=\E)B, s2ds=\E*B, s3ds=\E+B,
               setab=\E[4%p1%dm, setaf=\E[3%p1%dm,
               sgr=\E[0;10%?%p1%t;7%;
                          %?%p2%t;4%;
                          %?%p3%t;7%;
                          %?%p4%t;5%;
                          %?%p6%t;1%;
                          %?%p7%t;8%;
                          %?%p9%t;11%;m,
               sgr0=\E[0;10m, smacs=\E[11m, smpch=\E[11m, smso=\E[7m,
               smul=\E[4m, tbc=\E[3g, u6=\E[%i%d;%dR, u7=\E[6n,
               u8=\E[?%[;0123456789]c, u9=\E[c, vpa=\E[%i%p1%dd,

       Entries may continue onto multiple lines by placing white space at  the
       beginning  of  each line except the first.  Comments may be included on
       lines beginning with "#".  Capabilities in terminfo are of three types:

       o   Boolean capabilities which indicate  that  the  terminal  has  some
           particular feature,

       o   numeric capabilities giving the size of the terminal or the size of
           particular delays, and

       o   string capabilities, which give a sequence which  can  be  used  to
           perform particular terminal operations.


Types of Capabilities

       All capabilities have names.  For instance, the fact that ANSI-standard
       terminals have automatic margins (i.e., an automatic return  and  line-
       feed  when the end of a line is reached) is indicated by the capability
       am.  Hence the description of ansi includes am.   Numeric  capabilities
       are  followed  by  the  character  "#" and then a positive value.  Thus
       cols, which indicates the number of columns the terminal has, gives the
       value  "80" for ansi.  Values for numeric capabilities may be specified
       in decimal, octal, or hexadecimal, using  the  C  programming  language
       conventions (e.g., 255, 0377 and 0xff or 0xFF).

       Finally,  string  valued capabilities, such as el (clear to end of line
       sequence) are given by the two-character  code,  an  "=",  and  then  a
       string ending at the next following ",".

       A  number  of  escape  sequences  are  provided  in  the  string valued
       capabilities for easy encoding of characters there:

       o   Both \E and \e map to an ESCAPE character,

       o   ^x maps to a control-x for any appropriate x, and

       o   the sequences

             \n, \l, \r, \t, \b, \f, and \s

           produce

             newline, line-feed, return, tab, backspace, form-feed, and space,

           respectively.

       X/Open Curses does not say what "appropriate x" might be.  In practice,
       that  is a printable ASCII graphic character.  The special case "^?" is
       interpreted as DEL (127).  In all other cases, the character  value  is
       AND'd  with 0x1f, mapping to ASCII control codes in the range 0 through
       31.

       Other escapes include

       o   \^ for ^,

       o   \\ for \,

       o   \, for comma,

       o   \: for :,

       o   and \0 for null.

           \0 will produce \200, which does not terminate a string but behaves
           as  a null character on most terminals, providing CS7 is specified.
           See stty(1).

           The reason for this quirk is to maintain  binary  compatibility  of
           the  compiled  terminfo files with other implementations, e.g., the
           SVr4 systems, which document this.   Compiled  terminfo  files  use
           null-terminated  strings,  with  no  lengths.  Modifying this would
           require a new binary  format,  which  would  not  work  with  other
           implementations.

       Finally, characters may be given as three octal digits after a \.

       A  delay  in  milliseconds  may appear anywhere in a string capability,
       enclosed in $<..> brackets, as in el=\EK$<5>,  and  padding  characters
       are supplied by tputs(3x) to provide this delay.

       o   The  delay  must  be  a  number  with  at most one decimal place of
           precision; it may be followed by suffixes "*" or "/" or both.

       o   A "*" indicates that the padding required is  proportional  to  the
           number  of lines affected by the operation, and the amount given is
           the per-affected-unit padding required.  (In  the  case  of  insert
           character, the factor is still the number of lines affected.)

           Normally, padding is advisory if the device has the xon capability;
           it is used for cost computation but does not trigger delays.

       o   A "/" suffix indicates that the padding is mandatory and  forces  a
           delay of the given number of milliseconds even on devices for which
           xon is present to indicate flow control.

       Sometimes individual capabilities must be commented out.  To  do  this,
       put  a  period before the capability name.  For example, see the second
       ind in the example above.


Fetching Compiled Descriptions

       Terminal descriptions in ncurses  are  stored  in  terminal  databases.
       These  databases,  which are found by their pathname, may be configured
       either as directory trees or hashed databases (see term(5)),

       The library  uses  a  compiled-in  list  of  pathnames,  which  can  be
       overridden  by  environment  variables.   Before  starting  to  search,
       ncurses checks the search list, eliminating  duplicates  and  pathnames
       where  no  terminal  database  is found.  The ncurses library reads the
       first description which passes its consistency checks.

       o   The environment variable TERMINFO is checked first, for a  terminal
           database containing the terminal description.

       o   Next, ncurses looks in $HOME/.terminfo for a compiled description.

           This  is an optional feature which may be omitted entirely from the
           library,  or  limited  to  prevent  accidental  use  by  privileged
           applications.

       o   Next,  if  the  environment  variable TERMINFO_DIRS is set, ncurses
           interprets the contents of  that  variable  as  a  list  of  colon-
           separated pathnames of terminal databases to be searched.

           An  empty  pathname  (i.e.,  if  the variable begins or ends with a
           colon, or contains adjacent colons) is interpreted  as  the  system
           location /usr/share/terminfo.

       o   Finally, ncurses searches these compiled-in locations:

           o   a list of directories (/usr/share/terminfo), and

           o   the system terminfo directory, /usr/share/terminfo

       The TERMINFO variable can contain a terminal description instead of the
       pathname of a terminal database.  If this variable begins  with  "hex:"
       or  "b64:"  then ncurses reads a terminal description from hexadecimal-
       or base64-encoded data,  and  if  that  description  matches  the  name
       sought,  will  use  that.   This encoded data can be set using the "-Q"
       option of tic or infocmp.

       The preceding addresses the usual configuration of ncurses, which  uses
       terminal  descriptions  prepared  in terminfo format.  While termcap is
       less expressive,  ncurses  can  also  be  configured  to  read  termcap
       descriptions.   In  that  configuration,  it  checks  the  TERMCAP  and
       TERMPATH variables (for content and search  path,  respectively)  after
       the system terminal database.


Preparing Descriptions

       We  now  outline  how  to  prepare descriptions of terminals.  The most
       effective way to prepare a terminal description  is  by  imitating  the
       description  of  a  similar  terminal  in  terminfo  and  to build up a
       description gradually, using partial descriptions with vi or some other
       screen-oriented  program to check that they are correct.  Be aware that
       a very unusual terminal may expose deficiencies in the ability  of  the
       terminfo file to describe it or bugs in the screen-handling code of the
       test program.

       To get the padding for insert line right (if the terminal  manufacturer
       did  not  document  it)  a  severe test is to edit a large file at 9600
       baud, delete 16 or so lines from the middle of the screen, then hit the
       "u" key several times quickly.  If the terminal messes up, more padding
       is usually needed.  A similar test can be used for insert character.


Basic Capabilities

       The number of columns on each line for the terminal  is  given  by  the
       cols  numeric capability.  If the terminal is a CRT, then the number of
       lines on the screen is given by the lines capability.  If the  terminal
       wraps  around  to  the  beginning  of the next line when it reaches the
       right margin, then it should have the am capability.  If  the  terminal
       can  clear  its  screen,  leaving the cursor in the home position, then
       this is  given  by  the  clear  string  capability.   If  the  terminal
       overstrikes (rather than clearing a position when a character is struck
       over) then it should have the os capability.   If  the  terminal  is  a
       printing terminal, with no soft copy unit, give it both hc and os.  (os
       applies to storage scope terminals, such as TEKTRONIX 4010  series,  as
       well  as  hard copy and APL terminals.)  If there is a code to move the
       cursor to the left edge of the current row, give this as cr.  (Normally
       this  will  be  carriage  return,  control/M.)   If  there is a code to
       produce an audible signal (bell, beep, etc) give this as bel.

       If there is a code to move the cursor one position to the left (such as
       backspace)  that  capability should be given as cub1.  Similarly, codes
       to move to the right, up, and down should be given as cuf1,  cuu1,  and
       cud1.   These  local cursor motions should not alter the text they pass
       over, for example, you would not  normally  use  "cuf1= "  because  the
       space would erase the character moved over.

       A very important point here is that the local cursor motions encoded in
       terminfo are undefined at the left and top edges  of  a  CRT  terminal.
       Programs should never attempt to backspace around the left edge, unless
       bw is given, and never attempt to go up locally off the top.  In  order
       to  scroll  text up, a program will go to the bottom left corner of the
       screen and send the ind (index) string.

       To scroll text down, a program goes to  the  top  left  corner  of  the
       screen and sends the ri (reverse index) string.  The strings ind and ri
       are undefined when not on their respective corners of the screen.

       Parameterized versions of the scrolling  sequences  are  indn  and  rin
       which  have  the same semantics as ind and ri except that they take one
       parameter, and scroll that many lines.  They are also undefined  except
       at the appropriate edge of the screen.

       The  am capability tells whether the cursor sticks at the right edge of
       the screen when text is output, but this does not necessarily apply  to
       a  cuf1  from  the last column.  The only local motion which is defined
       from the left edge is if bw is given, then a cub1 from  the  left  edge
       will  move  to the right edge of the previous row.  If bw is not given,
       the effect is undefined.  This is useful for drawing a box  around  the
       edge of the screen, for example.  If the terminal has switch selectable
       automatic margins, the terminfo file usually assumes that this  is  on;
       i.e.,  am.   If  the  terminal  has  a command which moves to the first
       column of the next line, that command can be given  as  nel  (newline).
       It  does  not matter if the command clears the remainder of the current
       line, so if the terminal has no cr and lf it may still be  possible  to
       craft a working nel out of one or both of them.

       These  capabilities  suffice  to  describe  hard-copy  and  "glass-tty"
       terminals.  Thus the model 33 teletype is described as

       33|tty33|tty|model 33 teletype,
               bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os,

       while the Lear Siegler ADM-3 is described as

       adm3|3|lsi adm3,
               am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,
               ind=^J, lines#24,


Parameterized Strings

       Cursor  addressing  and  other  strings  requiring  parameters  in  the
       terminal  are  described  by  a  parameterized  string capability, with
       printf-like escapes such as %x in it.   For  example,  to  address  the
       cursor,  the cup capability is given, using two parameters: the row and
       column to address to.  (Rows and columns are  numbered  from  zero  and
       refer  to  the  physical  screen visible to the user, not to any unseen
       memory.)  If the terminal has memory relative cursor  addressing,  that
       can be indicated by mrcup.

       The  parameter mechanism uses a stack and special % codes to manipulate
       it.  Typically a sequence will push one  of  the  parameters  onto  the
       stack  and  then  print  it  in  some  format.  Print (e.g., "%d") is a
       special case.  Other operations, including "%t" pop their operand  from
       the  stack.   It  is  noted  that  more  complex  operations  are often
       necessary, e.g., in the sgr string.

       The % encodings have the following meanings:

       %%   outputs "%"

       %[[:]flags][width[.precision]][doxXs]
            as in printf(3), flags are [-+#] and space.  Use a  ":"  to  allow
            the next character to be a "-" flag, avoiding interpreting "%-" as
            an operator.

       %c   print pop() like %c in printf

       %s   print pop() like %s in printf

       %p[1-9]
            push i'th parameter

       %P[a-z]
            set dynamic variable [a-z] to pop()

       %g[a-z]
            get dynamic variable [a-z] and push it

       %P[A-Z]
            set static variable [a-z] to pop()

       %g[A-Z]
            get static variable [a-z] and push it

            The terms "static" and "dynamic"  are  misleading.   Historically,
            these are simply two different sets of variables, whose values are
            not reset between calls to tparm(3x).  However, that fact  is  not
            documented in other implementations.  Relying on it will adversely
            impact portability to other implementations:

            o   SVr2 curses supported dynamic variables.  Those are  set  only
                by  a  %P  operator.   A %g for a given variable without first
                setting it with %P will give  unpredictable  results,  because
                dynamic  variables  are  an  uninitialized  local array on the
                stack in the tparm function.

            o   SVr3.2 curses supported static variables.  Those are an  array
                in the TERMINAL structure (declared in term.h), and are zeroed
                automatically when the setupterm function allocates the data.

            o   SVr4 curses made no further improvements to the dynamic/static
                variable feature.

            o   Solaris  XPG4  curses does not distinguish between dynamic and
                static variables.  They are the same.  Like SVr4 curses,  XPG4
                curses does not initialize these explicitly.

            o   Before  version  6.3,  ncurses  stores both dynamic and static
                variables in persistent storage, initialized to zeros.

            o   Beginning with version 6.3, ncurses stores static and  dynamic
                variables in the same manner as SVr4.

                o   Unlike   other   implementations,  ncurses  zeros  dynamic
                    variables before the first %g or %P operator.

                o   Like SVr2, the scope of dynamic variables  in  ncurses  is
                    within the current call to tparm.  Use static variables if
                    persistent storage is needed.

       %'c' char constant c

       %{nn}
            integer constant nn

       %l   push strlen(pop)

       %+, %-, %*, %/, %m
            arithmetic (%m is mod): push(pop() op pop())

       %&, %|, %^
            bit operations (AND, OR and exclusive-OR): push(pop() op pop())

       %=, %>, %<
            logical operations: push(pop() op pop())

       %A, %O
            logical AND and OR operations (for conditionals)

       %!, %~
            unary operations (logical and bit complement): push(op pop())

       %i   add 1 to first two parameters (for ANSI terminals)

       %? expr %t thenpart %e elsepart %;
            This forms an if-then-else.  The %e elsepart is optional.  Usually
            the  %?  expr  part  pushes a value onto the stack, and %t pops it
            from the stack, testing if it is nonzero (true).  If  it  is  zero
            (false), control passes to the %e (else) part.

            It is possible to form else-if's a la Algol 68:
            %? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;

            where ci are conditions, bi are bodies.

            Use  the  -f  option of tic or infocmp to see the structure of if-
            then-else's.  Some strings, e.g., sgr can be very complicated when
            written  on  one line.  The -f option splits the string into lines
            with the parts indented.

       Binary operations are in postfix form with the operands  in  the  usual
       order.   That  is,  to  get  x-5  one would use "%gx%{5}%-".  %P and %g
       variables are persistent across escape-string evaluations.

       Consider the HP2645, which, to get to row 3 and column 12, needs to  be
       sent  \E&a12c03Y  padded for 6 milliseconds.  The order of the rows and
       columns is inverted here, and the row and column  are  printed  as  two
       digits.  The corresponding terminal description is expressed thus:
              cup=\E&a%p2%dc%p1%dY$<6>,

       The  Microterm ACT-IV needs the current row and column sent preceded by
       a ^T, with the row and column simply encoded in binary,
              cup=^T%p1%c%p2%c

       Terminals which use "%c" need  to  be  able  to  backspace  the  cursor
       (cub1),  and to move the cursor up one line on the screen (cuu1).  This
       is necessary because it is not always safe to transmit \n ^D and \r, as
       the  system  may change or discard them.  (The library routines dealing
       with terminfo set tty modes so that tabs are never expanded, so  \t  is
       safe to send.  This turns out to be essential for the Ann Arbor 4080.)

       A  final example is the LSI ADM-3a, which uses row and column offset by
       a blank character, thus
              cup=\E=%p1%' '%+%c%p2%' '%+%c

       After sending "\E=", this pushes the first parameter, pushes the  ASCII
       value  for  a  space  (32),  adds them (pushing the sum on the stack in
       place of  the  two  previous  values)  and  outputs  that  value  as  a
       character.   Then  the  same  is  done  for the second parameter.  More
       complex arithmetic is possible using the stack.


Cursor Motions

       If the terminal has a fast way to home the cursor (to very  upper  left
       corner  of screen) then this can be given as home; similarly a fast way
       of getting to the lower left-hand corner can be given as ll;  this  may
       involve going up with cuu1 from the home position, but a program should
       never do this itself (unless ll does) because it can make no assumption
       about  the  effect  of moving up from the home position.  Note that the
       home position is the same as addressing  to  (0,0):  to  the  top  left
       corner  of  the  screen,  not of memory.  (Thus, the \EH sequence on HP
       terminals cannot be used for home.)

       If the terminal has row or column absolute cursor addressing, these can
       be  given  as  single  parameter  capabilities hpa (horizontal position
       absolute) and vpa (vertical position absolute).   Sometimes  these  are
       shorter  than  the  more  general  two  parameter sequence (as with the
       hp2645)  and  can  be  used  in  preference  to  cup.   If  there   are
       parameterized  local  motions  (e.g., move n spaces to the right) these
       can be given as  cud,  cub,  cuf,  and  cuu  with  a  single  parameter
       indicating  how many spaces to move.  These are primarily useful if the
       terminal does not have cup, such as the TEKTRONIX 4025.

       If the terminal needs to be in a special mode when  running  a  program
       that uses these capabilities, the codes to enter and exit this mode can
       be given as smcup and rmcup.  This arises, for example, from  terminals
       like  the  Concept  with more than one page of memory.  If the terminal
       has only memory relative cursor  addressing  and  not  screen  relative
       cursor  addressing,  a  one  screen-sized window must be fixed into the
       terminal for cursor addressing to work properly.  This is also used for
       the  TEKTRONIX  4025,  where smcup sets the command character to be the
       one used by terminfo.  If the  smcup  sequence  will  not  restore  the
       screen  after  an  rmcup  sequence  is  output  (to  the state prior to
       outputting rmcup), specify nrrmc.


Margins

       SVr4 (and X/Open Curses) list several string capabilities  for  setting
       margins.   Two  were  intended  for use with terminals, and another six
       were intended for use with printers.

       o   The two terminal capabilities assume that the terminal may have the
           capability  of  setting the left and/or right margin at the current
           cursor column position.

       o   The printer capabilities assume that the printer may have two types
           of capability:

           o   the ability to set a top and/or bottom margin using the current
               line position, and

           o   parameterized capabilities for setting the top,  bottom,  left,
               right margins given the number of rows or columns.

       In  practice,  the  categorization into "terminal" and "printer" is not
       suitable:

       o   The AT&T SVr4 terminal database uses  smgl  four  times,  for  AT&T
           hardware.

           Three  of  the  four  are  printers.   They lack the ability to set
           left/right margins by specifying the column.

       o   Other (non-AT&T) terminals may support margins but using  different
           assumptions from AT&T.

           For  instance,  the DEC VT420 supports left/right margins, but only
           using a column parameter.  As an added complication, the VT420 uses
           two  settings to fully enable left/right margins (left/right margin
           mode, and origin mode).  The  former  enables  the  margins,  which
           causes  printed  text  to  wrap  within  margins, but the latter is
           needed to prevent cursor-addressing outside those margins.

       o   Both DEC VT420 left/right margins are set  with  a  single  control
           sequence.  If either is omitted, the corresponding margin is set to
           the left or right edge of the  display  (rather  than  leaving  the
           margin unmodified).

       These are the margin-related capabilities:

                 Name    Description
                 ---------------------------------------------------
                 smgl    Set left margin at current column
                 smgr    Set right margin at current column
                 smgb    Set bottom margin at current line
                 smgt    Set top margin at current line
                 smgbp   Set bottom margin at line N
                 smglp   Set left margin at column N
                 smgrp   Set right margin at column N
                 smgtp   Set top margin at line N
                 smglr   Set both left and right margins to L and R
                 smgtb   Set both top and bottom margins to T and B

       When  writing  an  application that uses these string capabilities, the
       pairs should be first checked to see if each capability in the pair  is
       set or only one is set:

       o   If  both  smglp  and  smgrp  are  set,  each  is used with a single
           argument, N, that gives the column number of  the  left  and  right
           margin, respectively.

       o   If  both  smgtp  and smgbp are set, each is used to set the top and
           bottom margin, respectively:

           o   smgtp is used with a single argument, N, the line number of the
               top margin.

           o   smgbp  is  used with two arguments, N and M, that give the line
               number of the bottom margin, the first counting from the top of
               the  page  and  the  second  counting  from  the  bottom.  This
               accommodates the two styles of specifying the bottom margin  in
               different manufacturers' printers.

           When  designing  a terminfo entry for a printer that has a settable
           bottom margin, only the first or second argument  should  be  used,
           depending on the printer.  When developing an application that uses
           smgbp to set the bottom margin, both arguments must be given.

       Conversely, when only one capability in the pair is set:

       o   If only one of smglp and smgrp is set, then it  is  used  with  two
           arguments, the column number of the left and right margins, in that
           order.

       o   Likewise, if only one of smgtp and smgbp is set, then  it  is  used
           with  two  arguments  that give the top and bottom margins, in that
           order, counting from the top of the page.

           When designing a terminfo entry for a printer that requires setting
           both  left and right or top and bottom margins simultaneously, only
           one capability in the pairs smglp and  smgrp  or  smgtp  and  smgbp
           should be defined, leaving the other unset.

       Except  for  very  old terminal descriptions, e.g., those developed for
       SVr4, the scheme just described  should  be  considered  obsolete.   An
       improved set of capabilities was added late in the SVr4 releases (smglr
       and smgtb),  which  explicitly  use  two  parameters  for  setting  the
       left/right or top/bottom margins.

       When setting margins, the line- and column-values are zero-based.

       The  mgc  string  capability  should  be defined.  Applications such as
       tabs(1) rely upon this to reset all margins.


Area Clears

       If the terminal can clear from the current position to the end  of  the
       line,  leaving  the cursor where it is, this should be given as el.  If
       the terminal can clear from the beginning of the line  to  the  current
       position  inclusive,  leaving  the  cursor  where it is, this should be
       given as el1.  If the terminal can clear from the current  position  to
       the  end  of  the display, then this should be given as ed.  Ed is only
       defined from the first column of a line.  (Thus, it can be simulated by
       a  request  to  delete  a  large  number  of lines, if a true ed is not
       available.)


Insert/Delete Line and Vertical Motions

       If the terminal can open a new blank line before  the  line  where  the
       cursor  is,  this  should  be  given as il1; this is done only from the
       first position of a line.  The cursor must then  appear  on  the  newly
       blank  line.   If  the terminal can delete the line which the cursor is
       on, then this should be given as dl1; this is done only from the  first
       position on the line to be deleted.  Versions of il1 and dl1 which take
       a single parameter and insert or delete that many lines can be given as
       il and dl.

       If  the  terminal  has a settable scrolling region (like the vt100) the
       command to set this can be described with  the  csr  capability,  which
       takes two parameters: the top and bottom lines of the scrolling region.
       The cursor position is, alas, undefined after using this command.

       It is possible to get the effect of insert or delete line using csr  on
       a  properly  chosen  region;  the  sc  and rc (save and restore cursor)
       commands may be useful for ensuring that your synthesized insert/delete
       string  does  not  move the cursor.  (Note that the ncurses(3x) library
       does  this  synthesis  automatically,   so   you   need   not   compose
       insert/delete strings for an entry with csr).

       Yet  another  way  to  construct  insert  and  delete might be to use a
       combination of  index  with  the  memory-lock  feature  found  on  some
       terminals   (like   the   HP-700/90  series,  which  however  also  has
       insert/delete).

       Inserting lines at the top or bottom of the screen  can  also  be  done
       using  ri  or  ind on many terminals without a true insert/delete line,
       and is often faster even on terminals with those features.

       The Boolean non_dest_scroll_region should  be  set  if  each  scrolling
       window  is  effectively  a view port on a screen-sized canvas.  To test
       for this capability, create a scrolling region in  the  middle  of  the
       screen,  write something to the bottom line, move the cursor to the top
       of the region, and do ri followed by dl1 or ind.  If the data  scrolled
       off  the  bottom  of the region by the ri re-appears, then scrolling is
       non-destructive.  System V and XSI Curses expect that  ind,  ri,  indn,
       and  rin  will  simulate  destructive  scrolling;  their  documentation
       cautions you not to define  csr  unless  this  is  true.   This  curses
       implementation  is  more  liberal  and  will  do  explicit erases after
       scrolling if ndsrc is defined.

       If the terminal has the ability to define a window as part  of  memory,
       which  all  commands  affect,  it  should be given as the parameterized
       string wind.  The four parameters are the starting and ending lines  in
       memory and the starting and ending columns in memory, in that order.

       If the terminal can retain display memory above, then the da capability
       should be given; if display memory  can  be  retained  below,  then  db
       should  be given.  These indicate that deleting a line or scrolling may
       bring non-blank lines up from below or that scrolling back with ri  may
       bring down non-blank lines.


Insert/Delete Character

       There  are  two  basic  kinds  of intelligent terminals with respect to
       insert/delete character which can be  described  using  terminfo.   The
       most   common   insert/delete  character  operations  affect  only  the
       characters on the current line and shift characters off the end of  the
       line  rigidly.  Other terminals, such as the Concept 100 and the Perkin
       Elmer Owl, make a distinction between typed and untyped blanks  on  the
       screen,  shifting  upon an insert or delete only to an untyped blank on
       the screen which is either  eliminated,  or  expanded  to  two  untyped
       blanks.

       You  can determine the kind of terminal you have by clearing the screen
       and then typing text separated by cursor  motions.   Type  "abc    def"
       using  local  cursor  motions  (not  spaces)  between the "abc" and the
       "def".  Then position the cursor before the "abc" and put the  terminal
       in  insert  mode.   If typing characters causes the rest of the line to
       shift rigidly and characters to fall off the end,  then  your  terminal
       does  not  distinguish  between  blanks  and untyped positions.  If the
       "abc" shifts over to the "def" which then move together around the  end
       of  the  current  line  and  onto  the next as you insert, you have the
       second type of terminal, and  should  give  the  capability  in,  which
       stands for "insert null".

       While  these  are  two  logically  separate attributes (one line versus
       multi-line insert mode, and special treatment  of  untyped  spaces)  we
       have  seen  no terminals whose insert mode cannot be described with the
       single attribute.

       Terminfo can describe both terminals which have  an  insert  mode,  and
       terminals  which send a simple sequence to open a blank position on the
       current line.  Give as smir the sequence to get into insert mode.  Give
       as  rmir  the  sequence  to  leave  insert  mode.  Now give as ich1 any
       sequence needed to be sent just before  sending  the  character  to  be
       inserted.   Most  terminals with a true insert mode will not give ich1;
       terminals which send a sequence to open a screen position  should  give
       it here.

       If  your  terminal has both, insert mode is usually preferable to ich1.
       Technically, you should not give  both  unless  the  terminal  actually
       requires  both to be used in combination.  Accordingly, some non-curses
       applications get confused if both are present; the symptom  is  doubled
       characters  in  an  update using insert.  This requirement is now rare;
       most ich sequences do not require previous smir, and most  smir  insert
       modes  do  not  require ich1 before each character.  Therefore, the new
       curses actually assumes this is the case and uses either  rmir/smir  or
       ich/ich1  as appropriate (but not both).  If you have to write an entry
       to be used under new curses for a terminal old  enough  to  need  both,
       include the rmir/smir sequences in ich1.

       If post insert padding is needed, give this as a number of milliseconds
       in ip (a string option).  Any other sequence which may need to be  sent
       after an insert of a single character may also be given in ip.  If your
       terminal needs both to be placed into an "insert mode"  and  a  special
       code  to  precede each inserted character, then both smir/rmir and ich1
       can be given, and both will be used.   The  ich  capability,  with  one
       parameter, n, will repeat the effects of ich1 n times.

       If  padding  is  necessary between characters typed while not in insert
       mode, give this as a number of milliseconds padding in rmp.

       It is occasionally necessary to move around while  in  insert  mode  to
       delete  characters  on the same line (e.g., if there is a tab after the
       insertion position).  If your terminal allows motion  while  in  insert
       mode  you  can  give  the  capability mir to speed up inserting in this
       case.  Omitting mir will affect only speed.   Some  terminals  (notably
       Datamedia's)  must  not  have  mir because of the way their insert mode
       works.

       Finally, you can specify dch1 to delete a single  character,  dch  with
       one  parameter,  n,  to  delete n characters, and delete mode by giving
       smdc and rmdc to enter and exit delete  mode  (any  mode  the  terminal
       needs to be placed in for dch1 to work).

       A  command  to  erase  n  characters (equivalent to outputting n blanks
       without moving the cursor) can be given as ech with one parameter.


Highlighting, Underlining, and Visible Bells

       If your terminal has one or more kinds of display attributes, these can
       be  represented  in  a number of different ways.  You should choose one
       display form as standout mode,  representing  a  good,  high  contrast,
       easy-on-the-eyes,  format  for  highlighting  error  messages and other
       attention getters.  (If you have a choice,  reverse  video  plus  half-
       bright  is  good,  or reverse video alone.)  The sequences to enter and
       exit standout mode are given as smso and rmso,  respectively.   If  the
       code  to  change  into  or  out of standout mode leaves one or even two
       blank spaces on the screen, as the TVI 912 and Teleray  1061  do,  then
       xmc should be given to tell how many spaces are left.

       Codes to begin underlining and end underlining can be given as smul and
       rmul respectively.  If the terminal has a code to underline the current
       character  and  move  the  cursor  one  space to the right, such as the
       Microterm Mime, this can be given as uc.

       Other capabilities to enter various highlighting  modes  include  blink
       (blinking)  bold  (bold or extra bright) dim (dim or half-bright) invis
       (blanking or invisible text) prot (protected) rev (reverse video)  sgr0
       (turn  off  all  attribute  modes) smacs (enter alternate character set
       mode) and rmacs (exit alternate character set mode).  Turning on any of
       these modes singly may or may not turn off other modes.

       If  there  is  a  sequence to set arbitrary combinations of modes, this
       should be given as sgr (set attributes),  taking  9  parameters.   Each
       parameter is either zero (0) or nonzero, as the corresponding attribute
       is on or off.  The 9 parameters are,  in  order:  standout,  underline,
       reverse,  blink,  dim,  bold,  blank, protect, alternate character set.
       Not  all  modes  need  be  supported  by  sgr,  only  those  for  which
       corresponding separate attribute commands exist.

       For example, the DEC vt220 supports most of the modes:

                   tparm Parameter   Attribute    Escape Sequence
                   ------------------------------------------------
                   none              none         \E[0m
                   p1                standout     \E[0;1;7m
                   p2                underline    \E[0;4m
                   p3                reverse      \E[0;7m
                   p4                blink        \E[0;5m
                   p5                dim          not available
                   p6                bold         \E[0;1m
                   p7                invis        \E[0;8m
                   p8                protect      not used
                   p9                altcharset   ^O (off) ^N (on)

       We  begin each escape sequence by turning off any existing modes, since
       there is no quick way to determine whether they are  active.   Standout
       is  set  up  to  be  the  combination  of  reverse and bold.  The vt220
       terminal has a protect mode, though it is  not  commonly  used  in  sgr
       because  it protects characters on the screen from the host's erasures.
       The altcharset mode also is different in that it is either  ^O  or  ^N,
       depending  on whether it is off or on.  If all modes are turned on, the
       resulting sequence is \E[0;1;4;5;7;8m^N.

       Some sequences are common to  different  modes.   For  example,  ;7  is
       output  when  either  p1  or p3 is true, that is, if either standout or
       reverse modes are turned on.

       Writing out the above sequences, along with their dependencies yields

                 Sequence   When to Output      terminfo Translation
                 ----------------------------------------------------
                 \E[0       always              \E[0
                 ;1         if p1 or p6         %?%p1%p6%|%t;1%;
                 ;4         if p2               %?%p2%|%t;4%;
                 ;5         if p4               %?%p4%|%t;5%;
                 ;7         if p1 or p3         %?%p1%p3%|%t;7%;
                 ;8         if p7               %?%p7%|%t;8%;
                 m          always              m
                 ^N or ^O   if p9 ^N, else ^O   %?%p9%t^N%e^O%;

       Putting this all together into the sgr sequence gives:

           sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p4%t;5%;
               %?%p1%p3%|%t;7%;%?%p7%t;8%;m%?%p9%t\016%e\017%;,

       Remember that if you specify sgr, you must also  specify  sgr0.   Also,
       some  implementations  rely  on  sgr  being  given  if sgr0 is, Not all
       terminfo  entries  necessarily  have  an  sgr  string,  however.   Many
       terminfo  entries  are  derived  from termcap entries which have no sgr
       string.  The only drawback to adding an sgr string is that termcap also
       assumes that sgr0 does not exit alternate character set mode.

       Terminals   with  the  "magic  cookie"  glitch  (xmc)  deposit  special
       "cookies" when they receive mode-setting sequences,  which  affect  the
       display  algorithm  rather  than  having extra bits for each character.
       Some terminals, such as the HP 2621, automatically leave standout  mode
       when  they  move  to  a  new line or the cursor is addressed.  Programs
       using standout mode should exit standout mode before moving the  cursor
       or  sending a newline, unless the msgr capability, asserting that it is
       safe to move in standout mode, is present.

       If the terminal has a way of flashing the screen to indicate  an  error
       quietly  (a  bell replacement) then this can be given as flash; it must
       not move the cursor.

       If the cursor needs to be made more visible than normal when it is  not
       on the bottom line (to make, for example, a non-blinking underline into
       an easier to find block or blinking underline) give  this  sequence  as
       cvvis.  If there is a way to make the cursor completely invisible, give
       that as civis.  The capability cnorm should be given which  undoes  the
       effects of both of these modes.

       If  your  terminal  correctly  generates underlined characters (with no
       special codes needed) even though it  does  not  overstrike,  then  you
       should  give  the  capability  ul.  If a character overstriking another
       leaves both characters on the screen, specify the  capability  os.   If
       overstrikes are erasable with a blank, then this should be indicated by
       giving eo.


Keypad and Function Keys

       If the terminal has a keypad that transmits codes  when  the  keys  are
       pressed,  this  information can be given.  Note that it is not possible
       to handle terminals where the keypad only works in local (this applies,
       for  example, to the unshifted HP 2621 keys).  If the keypad can be set
       to transmit or not  transmit,  give  these  codes  as  smkx  and  rmkx.
       Otherwise the keypad is assumed to always transmit.

       The  codes  sent  by the left arrow, right arrow, up arrow, down arrow,
       and home keys can be given as kcub1, kcuf1,  kcuu1,  kcud1,  and  khome
       respectively.  If there are function keys such as f0, f1, ..., f10, the
       codes they send can be given as kf0, kf1, ...,  kf10.   If  these  keys
       have  labels  other  than the default f0 through f10, the labels can be
       given as lf0, lf1, ..., lf10.

       The codes transmitted by certain other special keys can be given:

       o   kll (home down),

       o   kbs (backspace),

       o   ktbc (clear all tabs),

       o   kctab (clear the tab stop in this column),

       o   kclr (clear screen or erase key),

       o   kdch1 (delete character),

       o   kdl1 (delete line),

       o   krmir (exit insert mode),

       o   kel (clear to end of line),

       o   ked (clear to end of screen),

       o   kich1 (insert character or enter insert mode),

       o   kil1 (insert line),

       o   knp (next page),

       o   kpp (previous page),

       o   kind (scroll forward/down),

       o   kri (scroll backward/up),

       o   khts (set a tab stop in this column).

       In addition, if the keypad has a 3 by 3 array  of  keys  including  the
       four  arrow  keys,  the  other five keys can be given as ka1, ka3, kb2,
       kc1, and kc3.  These keys are useful when the  effects  of  a  3  by  3
       directional pad are needed.

       Strings to program function keys can be given as pfkey, pfloc, and pfx.
       A string to program screen labels should be specified as pln.  Each  of
       these  strings takes two parameters: the function key number to program
       (from 0 to 10) and the string to program it with.  Function key numbers
       out  of  this  range may program undefined keys in a terminal dependent
       manner.  The difference between the capabilities is that  pfkey  causes
       pressing  the  given  key  to  be the same as the user typing the given
       string; pfloc causes the string to  be  executed  by  the  terminal  in
       local; and pfx causes the string to be transmitted to the computer.

       The  capabilities  nlab,  lw  and  lh define the number of programmable
       screen labels and their width and height.  If  there  are  commands  to
       turn  the  labels  on  and  off,  give  them in smln and rmln.  smln is
       normally output after one or more pln sequences to make sure  that  the
       change becomes visible.


Tabs and Initialization

       A few capabilities are used only for tabs:

       o   If  the  terminal  has hardware tabs, the command to advance to the
           next tab stop can be given as ht (usually control/I).

       o   A "back-tab" command which moves leftward to the preceding tab stop
           can be given as cbt.

           By  convention,  if the teletype modes indicate that tabs are being
           expanded by the computer rather than being sent  to  the  terminal,
           programs  should  not use ht or cbt even if they are present, since
           the user may not have the tab stops properly set.

       o   If the terminal has hardware tabs which are initially set  every  n
           spaces when the terminal is powered up, the numeric parameter it is
           given, showing the number of spaces the tabs are set to.

           The it capability is normally used by the tset command to determine
           whether  to set the mode for hardware tab expansion, and whether to
           set the tab stops.  If the terminal has tab stops that can be saved
           in  non-volatile  memory,  the terminfo description can assume that
           they are properly set.

       Other capabilities include

       o   is1, is2, and is3, initialization strings for the terminal,

       o   iprog, the path name of a program  to  be  run  to  initialize  the
           terminal,

       o   and if, the name of a file containing long initialization strings.

       These  strings  are  expected to set the terminal into modes consistent
       with the rest of the terminfo description.  They are normally  sent  to
       the  terminal,  by  the  init option of the tput program, each time the
       user logs in.  They will be printed in the following order:

              run the program
                     iprog

              output
                     is1 and
                     is2

              set the margins using
                     mgc or
                     smglp and smgrp or
                     smgl and smgr

              set tabs using
                     tbc and hts

              print the file
                     if

              and finally output
                     is3.

       Most initialization is done with is2.  Special terminal  modes  can  be
       set  up  without duplicating strings by putting the common sequences in
       is2 and special cases in is1 and is3.

       A set of sequences that does a harder  reset  from  a  totally  unknown
       state can be given as rs1, rs2, rf and rs3, analogous to is1 , is2 , if
       and is3 respectively.  These strings are  output  by  reset  option  of
       tput,  or  by  the reset program (an alias of tset), which is used when
       the terminal gets into a wedged state.  Commands are normally placed in
       rs1, rs2 rs3 and rf only if they produce annoying effects on the screen
       and are not necessary when logging in.  For example, the command to set
       the  vt100  into  80-column  mode would normally be part of is2, but it
       causes an annoying glitch of the screen  and  is  not  normally  needed
       since the terminal is usually already in 80-column mode.

       The  reset  program  writes  strings including iprog, etc., in the same
       order as the init program, using rs1, etc., instead of  is1,  etc.   If
       any  of  rs1, rs2, rs3, or rf reset capability strings are missing, the
       reset  program  falls  back  upon  the   corresponding   initialization
       capability string.

       If  there are commands to set and clear tab stops, they can be given as
       tbc (clear all tab stops) and hts (set a tab stop in the current column
       of  every  row).   If a more complex sequence is needed to set the tabs
       than can be described by this, the sequence can be placed in is2 or if.

       The tput reset command uses the same capability strings  as  the  reset
       command,  although  the two programs (tput and reset) provide different
       command-line options.

       In  practice,  these  terminfo  capabilities  are  not  often  used  in
       initialization of tabs (though they are required for the tabs program):

       o   Almost all hardware terminals (at least those which supported tabs)
           initialized those to every eight columns:

           The only exception was the AT&T 2300  series,  which  set  tabs  to
           every five columns.

       o   In  particular,  developers  of  the  hardware  terminals which are
           commonly used as models  for  modern  terminal  emulators  provided
           documentation demonstrating that eight columns were the standard.

       o   Because of this, the terminal initialization programs tput and tset
           use  the  tbc  (clear_all_tabs)  and  hts  (set_tab)   capabilities
           directly  only when the it (init_tabs) capability is set to a value
           other than eight.


Delays and Padding

       Many older and slower terminals do not support either XON/XOFF  or  DTR
       handshaking,  including  hard copy terminals and some very archaic CRTs
       (including, for  example,  DEC  VT100s).   These  may  require  padding
       characters after certain cursor motions and screen changes.

       If the terminal uses xon/xoff handshaking for flow control (that is, it
       automatically emits ^S back to the host  when  its  input  buffers  are
       close  to  full),  set xon.  This capability suppresses the emission of
       padding.  You  can  also  set  it  for  memory-mapped  console  devices
       effectively that do not have a speed limit.  Padding information should
       still be included so that routines  can  make  better  decisions  about
       relative costs, but actual pad characters will not be transmitted.

       If pb (padding baud rate) is given, padding is suppressed at baud rates
       below the value of pb.  If the entry has no  padding  baud  rate,  then
       whether padding is emitted or not is completely controlled by xon.

       If  the  terminal requires other than a null (zero) character as a pad,
       then this can be given as pad.  Only the first  character  of  the  pad
       string is used.


Status Lines

       Some  terminals  have an extra "status line" which is not normally used
       by software (and thus not counted in the terminal's lines capability).

       The simplest case is a status line which is cursor-addressable but  not
       part of the main scrolling region on the screen; the Heathkit H19 has a
       status line of this kind, as would  a  24-line  VT100  with  a  23-line
       scrolling region set up on initialization.  This situation is indicated
       by the hs capability.

       Some terminals with status lines need special sequences to  access  the
       status  line.  These may be expressed as a string with single parameter
       tsl which takes the cursor to a given zero-origin column on the  status
       line.   The  capability  fsl  must  return  to  the  main-screen cursor
       positions before the last tsl.  You may need to embed the string values
       of  sc  (save  cursor)  and  rc  (restore  cursor)  in  tsl  and fsl to
       accomplish this.

       The status line is normally assumed to be the same width as  the  width
       of  the  terminal.   If  this  is  untrue,  you can specify it with the
       numeric capability wsl.

       A command to erase or blank the status line may be specified as dsl.

       The Boolean capability eslok specifies  that  escape  sequences,  tabs,
       etc., work ordinarily in the status line.

       The  ncurses implementation does not yet use any of these capabilities.
       They are documented here in case they ever become important.


Line Graphics

       Many terminals have alternate character sets useful for  forms-drawing.
       Terminfo  and  curses  have  built-in  support  for most of the drawing
       characters supported by the VT100, with some characters from  the  AT&T
       4410v1  added.   This  alternate  character set may be specified by the
       acsc capability.

                          acsc
       ACS Name      Value   Symbol   ASCII Fallback / Glyph Name
       ------------------------------------------------------------------------
       ACS_RARROW    0x2b      +      >  arrow pointing right
       ACS_LARROW    0x2c      ,      <  arrow pointing left
       ACS_UARROW    0x2d      -      ^  arrow pointing up
       ACS_DARROW    0x2e      .      v  arrow pointing down
       ACS_BLOCK     0x30      0      #  solid square block
       ACS_DIAMOND   0x60      `      +  diamond
       ACS_CKBOARD   0x61      a      :  checker board (stipple)
       ACS_DEGREE    0x66      f      \  degree symbol
       ACS_PLMINUS   0x67      g      #  plus/minus
       ACS_BOARD     0x68      h      #  board of squares
       ACS_LANTERN   0x69      i      #  lantern symbol
       ACS_LRCORNER  0x6a      j      +  lower right corner

       ACS_URCORNER  0x6b      k      +  upper right corner
       ACS_ULCORNER  0x6c      l      +  upper left corner
       ACS_LLCORNER  0x6d      m      +  lower left corner
       ACS_PLUS      0x6e      n      +  large plus or crossover
       ACS_S1        0x6f      o      ~  scan line 1
       ACS_S3        0x70      p      -  scan line 3
       ACS_HLINE     0x71      q      -  horizontal line
       ACS_S7        0x72      r      -  scan line 7
       ACS_S9        0x73      s      _  scan line 9
       ACS_LTEE      0x74      t      +  tee pointing right
       ACS_RTEE      0x75      u      +  tee pointing left
       ACS_BTEE      0x76      v      +  tee pointing up
       ACS_TTEE      0x77      w      +  tee pointing down
       ACS_VLINE     0x78      x      |  vertical line
       ACS_LEQUAL    0x79      y      <  less-than-or-equal-to
       ACS_GEQUAL    0x7a      z      >  greater-than-or-equal-to
       ACS_PI        0x7b      {      *  greek pi
       ACS_NEQUAL    0x7c      |      !  not-equal
       ACS_STERLING  0x7d      }      f  UK pound sign
       ACS_BULLET    0x7e      ~      o  bullet

       A few notes apply to the table itself:

       o   X/Open Curses incorrectly states that the mapping  for  lantern  is
           uppercase  "I"  although Unix implementations use the lowercase "i"
           mapping.

       o   The DEC VT100 implemented graphics using  the  alternate  character
           set  feature, temporarily switching modes and sending characters in
           the range 0x60 (96) to 0x7e (126) (the acsc  Value  column  in  the
           table).

       o   The AT&T terminal added graphics characters outside that range.

           Some  of  the  characters  within the range do not match the VT100;
           presumably they were used in the AT&T terminal:  board  of  squares
           replaces  the  VT100  newline symbol, while lantern symbol replaces
           the VT100 vertical tab symbol.  The other VT100 symbols for control
           characters  (horizontal tab, carriage return and line-feed) are not
           (re)used in curses.

       The best way to define a new device's graphics set is to add  a  column
       to  a  copy of this table for your terminal, giving the character which
       (when emitted between smacs/rmacs switches) will  be  rendered  as  the
       corresponding graphic.  Then read off the VT100/your terminal character
       pairs right to left in sequence; these become the ACSC string.


Color Handling

       The curses library functions init_pair and  init_color  manipulate  the
       color   pairs   and   color  values  discussed  in  this  section  (see
       curs_color(3x) for details on these and related functions).

       Most color terminals are either "Tektronix-like" or "HP-like":

       o   Tektronix-like terminals have a predefined set of N colors (where N
           is usually 8), and can set character-cell foreground and background
           characters independently, mixing them into N * N color pairs.

       o   On HP-like  terminals,  the  user  must  set  each  color  pair  up
           separately   (foreground   and  background  are  not  independently
           settable).  Up to M color pairs may be set up  from  2*M  different
           colors.  ANSI-compatible terminals are Tektronix-like.

       Some basic color capabilities are independent of the color method.  The
       numeric capabilities colors and pairs specify the  maximum  numbers  of
       colors  and  color  pairs that can be displayed simultaneously.  The op
       (original pair) string resets foreground and background colors to their
       default  values  for  the terminal.  The oc string resets all colors or
       color pairs to their default values for the terminal.   Some  terminals
       (including  many  PC  terminal  emulators)  erase screen areas with the
       current background color rather than the power-up  default  background;
       these should have the Boolean capability bce.

       While  the  curses  library  works  with  color  pairs  (reflecting the
       inability of some devices  to  set  foreground  and  background  colors
       independently),  there  are  separate  capabilities  for  setting these
       features:

       o   To  change  the  current  foreground  or  background  color  on   a
           Tektronix-type  terminal, use setaf (set ANSI foreground) and setab
           (set ANSI background)  or  setf  (set  foreground)  and  setb  (set
           background).  These take one parameter, the color number.  The SVr4
           documentation describes only setaf/setab; the XPG4 draft says  that
           "If  the  terminal supports ANSI escape sequences to set background
           and  foreground,  they  should  be  coded  as  setaf   and   setab,
           respectively.

       o   If  the  terminal supports other escape sequences to set background
           and  foreground,  they  should  be  coded   as   setf   and   setb,
           respectively.   The  vidputs  and the refresh(3x) functions use the
           setaf and setab capabilities if they are defined.

       The setaf/setab  and  setf/setb  capabilities  take  a  single  numeric
       argument each.  Argument values 0-7 of setaf/setab are portably defined
       as follows (the middle column is the symbolic #define available in  the
       header  for the curses or ncurses libraries).  The terminal hardware is
       free to map these as it likes,  but  the  RGB  values  indicate  normal
       locations in color space.

                    Color      #define       Value        RGB
                   ------------------------------------------------
                   black     COLOR_BLACK       0     0,   0,   0
                   red       COLOR_RED         1     max, 0,   0
                   green     COLOR_GREEN       2     0,   max, 0
                   yellow    COLOR_YELLOW      3     max, max, 0
                   blue      COLOR_BLUE        4     0,   0,   max
                   magenta   COLOR_MAGENTA     5     max, 0,   max
                   cyan      COLOR_CYAN        6     0,   max, max
                   white     COLOR_WHITE       7     max, max, max

       The argument values of setf/setb historically correspond to a different
       mapping, i.e.,

                    Color      #define       Value        RGB
                   ------------------------------------------------
                   black     COLOR_BLACK       0     0,   0,   0
                   blue      COLOR_BLUE        1     0,   0,   max
                   green     COLOR_GREEN       2     0,   max, 0
                   cyan      COLOR_CYAN        3     0,   max, max
                   red       COLOR_RED         4     max, 0,   0
                   magenta   COLOR_MAGENTA     5     max, 0,   max
                   yellow    COLOR_YELLOW      6     max, max, 0
                   white     COLOR_WHITE       7     max, max, max

       It is important to not confuse the  two  sets  of  color  capabilities;
       otherwise red/blue will be interchanged on the display.

       On  an  HP-like terminal, use scp with a color pair number parameter to
       set which color pair is current.

       Some terminals allow the color values to be modified:

       o   On a Tektronix-like terminal, the capability ccc may be present  to
           indicate  that colors can be modified.  If so, the initc capability
           will take a color number (0 to colors - 1)and three more parameters
           which  describe the color.  These three parameters default to being
           interpreted as RGB (Red,  Green,  Blue)  values.   If  the  Boolean
           capability hls is present, they are instead as HLS (Hue, Lightness,
           Saturation) indices.  The ranges are terminal-dependent.

       o   On an HP-like terminal, initp may give a capability for changing  a
           color  pair  value.   It  will  take seven parameters; a color pair
           number (0 to max_pairs -  1),  and  two  triples  describing  first
           background  and  then  foreground colors.  These parameters must be
           (Red, Green, Blue) or (Hue,  Lightness,  Saturation)  depending  on
           hls.

       On  some  color  terminals,  colors  collide  with highlights.  You can
       register these collisions with the ncv capability.  This is a bit  mask
       of   attributes   not   to  be  used  when  colors  are  enabled.   The
       correspondence with the attributes understood by curses is as follows:

                         Attribute     Bit   Decimal   Set by
                        --------------------------------------
                        A_STANDOUT      0         1    sgr
                        A_UNDERLINE     1         2    sgr
                        A_REVERSE       2         4    sgr
                        A_BLINK         3         8    sgr
                        A_DIM           4        16    sgr
                        A_BOLD          5        32    sgr
                        A_INVIS         6        64    sgr
                        A_PROTECT       7       128    sgr
                        A_ALTCHARSET    8       256    sgr
                        A_HORIZONTAL    9       512    sgr1
                        A_LEFT         10      1024    sgr1
                        A_LOW          11      2048    sgr1
                        A_RIGHT        12      4096    sgr1
                        A_TOP          13      8192    sgr1
                        A_VERTICAL     14     16384    sgr1
                        A_ITALIC       15     32768    sitm

       For example, on many IBM PC consoles, the underline attribute  collides
       with  the  foreground  color  blue  and is not available in color mode.
       These should have an ncv capability of 2.

       SVr4 curses does nothing with ncv, ncurses recognizes it and  optimizes
       the output in favor of colors.


Miscellaneous

       If  the  terminal requires other than a null (zero) character as a pad,
       then this can be given as pad.  Only the first  character  of  the  pad
       string is used.  If the terminal does not have a pad character, specify
       npc.  Note that ncurses implements the termcap-compatible PC  variable;
       though  the  application  may  set this value to something other than a
       null, ncurses will test npc first and use napms if the terminal has  no
       pad character.

       If  the terminal can move up or down half a line, this can be indicated
       with hu (half-line up) and hd  (half-line  down).   This  is  primarily
       useful  for  superscripts  and subscripts on hard-copy terminals.  If a
       hard-copy terminal can eject to the next page (form feed), give this as
       ff (usually control/L).

       If  there  is  a  command to repeat a given character a given number of
       times  (to  save  time  transmitting  a  large  number   of   identical
       characters)  this  can  be indicated with the parameterized string rep.
       The first parameter is the character to be repeated and the  second  is
       the number of times to repeat it.  Thus, tparm(repeat_char, 'x', 10) is
       the same as "xxxxxxxxxx".

       If the terminal has a settable command character, such as the TEKTRONIX
       4025,  this can be indicated with cmdch.  A prototype command character
       is chosen which is used in all capabilities.  This character  is  given
       in  the  cmdch  capability to identify it.  The following convention is
       supported on some Unix systems: The environment is to be searched for a
       CC  variable,  and if found, all occurrences of the prototype character
       are replaced with the character in the environment variable.

       Terminal descriptions that do not represent a specific  kind  of  known
       terminal,  such  as  switch, dialup, patch, and network, should include
       the gn (generic) capability so that programs can complain that they  do
       not  know how to talk to the terminal.  (This capability does not apply
       to virtual terminal descriptions for which  the  escape  sequences  are
       known.)

       If the terminal has a "meta key" which acts as a shift key, setting the
       8th bit of any character transmitted, this fact can be  indicated  with
       km.   Otherwise, software will assume that the 8th bit is parity and it
       will usually be cleared.  If strings exist to turn this "meta mode"  on
       and off, they can be given as smm and rmm.

       If the terminal has more lines of memory than will fit on the screen at
       once, the number of lines of memory can be indicated with lm.  A  value
       of lm#0 indicates that the number of lines is not fixed, but that there
       is still more memory than fits on the screen.

       If the terminal is one of those supported by the Unix virtual  terminal
       protocol, the terminal number can be given as vt.

       Media  copy strings which control an auxiliary printer connected to the
       terminal can be given as mc0: print the contents of  the  screen,  mc4:
       turn  off  the printer, and mc5: turn on the printer.  When the printer
       is on, all text sent to the terminal will be sent to the  printer.   It
       is  undefined whether the text is also displayed on the terminal screen
       when the printer is on.  A variation  mc5p  takes  one  parameter,  and
       leaves  the  printer  on  for  as  many  characters as the value of the
       parameter, then turns the printer off.  The parameter should not exceed
       255.   All  text, including mc4, is transparently passed to the printer
       while an mc5p is in effect.


Glitches and Brain Damage

       Hazeltine terminals, which do not allow "~" characters to be  displayed
       should indicate hz.

       Terminals  which  ignore a line-feed immediately after an am wrap, such
       as the Concept and vt100, should indicate xenl.

       If el is required to get rid of standout  (instead  of  merely  writing
       normal text on top of it), xhp should be given.

       Teleray terminals, where tabs turn all characters moved over to blanks,
       should indicate xt (destructive tabs).  Note: the  variable  indicating
       this   is   now  "dest_tabs_magic_smso";  in  older  versions,  it  was
       teleray_glitch.  This glitch is also taken  to  mean  that  it  is  not
       possible  to  position  the  cursor on top of a "magic cookie", that to
       erase standout mode it is instead necessary to use  delete  and  insert
       line.  The ncurses implementation ignores this glitch.

       The  Beehive Superbee, which is unable to correctly transmit the escape
       or control/C characters, has xsb, indicating that the f1  key  is  used
       for  escape  and  f2  for control/C.  (Only certain Superbees have this
       problem, depending on the ROM.)  Note that in older terminfo  versions,
       this capability was called "beehive_glitch"; it is now "no_esc_ctl_c".

       Other  specific  terminal  problems  may  be  corrected  by adding more
       capabilities of the form xx.


Pitfalls of Long Entries

       Long terminfo entries are unlikely to be a problem; to date,  no  entry
       has   even   approached   terminfo's  4096-byte  string-table  maximum.
       Unfortunately, the termcap translations are much more strictly  limited
       (to 1023 bytes), thus termcap translations of long terminfo entries can
       cause problems.

       The man pages for 4.3BSD and older versions  of  tgetent  instruct  the
       user  to  allocate a 1024-byte buffer for the termcap entry.  The entry
       gets null-terminated by the termcap library, so that makes the  maximum
       safe  length  for a termcap entry 1k-1 (1023) bytes.  Depending on what
       the application and the termcap library being used does, and  where  in
       the  termcap  file  the terminal type that tgetent is searching for is,
       several bad things can happen:

       o   some termcap libraries print a warning message,

       o   some exit if they find an entry that's longer than 1023 bytes,

       o   some neither exit nor warn, doing nothing useful, and

       o   some simply truncate the entries to 1023 bytes.

       Some application programs allocate more than the recommended 1K for the
       termcap entry; others do not.

       Each  termcap  entry has two important sizes associated with it: before
       "tc" expansion, and after "tc" expansion.  "tc" is the capability  that
       tacks on another termcap entry to the end of the current one, to add on
       its capabilities.  If a termcap entry does not use the "tc" capability,
       then of course the two lengths are the same.

       The  "before tc expansion" length is the most important one, because it
       affects more than just users of that particular terminal.  This is  the
       length  of the entry as it exists in /etc/termcap, minus the backslash-
       newline pairs, which tgetent strips out while reading it.  Some termcap
       libraries strip off the final newline, too (GNU termcap does not).  Now
       suppose:

       o   a termcap entry before expansion is more than 1023 bytes long,

       o   and the application has only allocated a 1k buffer,

       o   and the termcap library (like the one in BSD/OS 1.1 and GNU)  reads
           the  whole entry into the buffer, no matter what its length, to see
           if it is the entry it wants,

       o   and tgetent is searching for a terminal type  that  either  is  the
           long  entry,  appears  in the termcap file after the long entry, or
           does not appear in the file at all (so that tgetent has  to  search
           the whole termcap file).

       Then  tgetent  will  overwrite  memory, perhaps its stack, and probably
       core  dump  the  program.   Programs  like  telnet   are   particularly
       vulnerable;  modern  telnets  pass  along values like the terminal type
       automatically.  The results are almost as undesirable  with  a  termcap
       library,  like SunOS 4.1.3 and Ultrix 4.4, that prints warning messages
       when it reads an overly long  termcap  entry.   If  a  termcap  library
       truncates  long entries, like OSF/1 3.0, it is immune to dying here but
       will return incorrect data for the terminal.

       The "after tc expansion" length will  have  a  similar  effect  to  the
       above, but only for people who actually set TERM to that terminal type,
       since tgetent only does "tc" expansion once it is  found  the  terminal
       type it was looking for, not while searching.

       In  summary,  a termcap entry that is longer than 1023 bytes can cause,
       on various combinations of termcap libraries and applications,  a  core
       dump,  warnings, or incorrect operation.  If it is too long even before
       "tc" expansion, it will have this effect even for users of  some  other
       terminal  types  and  users whose TERM variable does not have a termcap
       entry.

       When in -C (translate to termcap) mode, the ncurses  implementation  of
       tic(1m)  issues  warning  messages  when the pre-tc length of a termcap
       translation is too long.  The -c (check) option  also  checks  resolved
       (after tc expansion) lengths.


FILES

       /usr/share/terminfo
              compiled terminal description database directory


EXTENSIONS

       Searching    for   terminal   descriptions   in   $HOME/.terminfo   and
       TERMINFO_DIRS is not supported by older implementations.

       Some SVr4 curses implementations, and all  previous  to  SVr4,  do  not
       interpret the %A and %O operators in parameter strings.

       SVr4/XPG4  do  not  specify  whether msgr licenses movement while in an
       alternate-character-set mode (such modes may, among other  things,  map
       CR  and  NL  to  characters  that  do  not trigger local motions).  The
       ncurses implementation ignores msgr in ALTCHARSET  mode.   This  raises
       the  possibility  that  an  XPG4  implementation  making  the  opposite
       interpretation may need terminfo entries made for ncurses to have  msgr
       turned off.

       The ncurses library handles insert-character and insert-character modes
       in a slightly non-standard way to get better  update  efficiency.   See
       the Insert/Delete Character subsection above.

       The  parameter  substitutions  for  set_clock and display_clock are not
       documented in SVr4 or the XSI Curses standard.  They are  deduced  from
       the documentation for the AT&T 505 terminal.

       Be  careful  assigning the kmous capability.  The ncurses library wants
       to interpret it as KEY_MOUSE, for use by terminals and  emulators  like
       xterm  that can return mouse-tracking information in the keyboard-input
       stream.

       X/Open Curses does not mention  italics.   Portable  applications  must
       assume  that  numeric  capabilities  are  signed  16-bit  values.  This
       includes the no_color_video (ncv) capability.   The  32768  mask  value
       used  for  italics with ncv can be confused with an absent or cancelled
       ncv.  If italics should work with colors, then the ncv  value  must  be
       specified, even if it is zero.

       Different  commercial  ports  of  terminfo and curses support different
       subsets of XSI Curses and (in some cases) different  extensions.   Here
       is  a  summary, accurate as of October 1995, after which the commercial
       Unix market contracted and lost diversity.

       o   SVr4, Solaris, and ncurses support all SVr4 capabilities.

       o   IRIX supports the SVr4  set  and  adds  one  undocumented  extended
           string capability (set_pglen).

       o   SVr1   and   Ultrix   support   a  restricted  subset  of  terminfo
           capabilities.  The Booleans end with xon_xoff;  the  numerics  with
           width_status_line; and the strings with prtr_non.

       o   HP/UX   supports  the  SVr1  subset,  plus  the  SVr[234]  numerics
           num_labels,  label_height,  label_width,  plus  function  keys   11
           through  63, plus plab_norm, label_on, and label_off, plus a number
           of incompatible string table extensions.

       o   AIX supports the SVr1 subset, plus function  keys  11  through  63,
           plus a number of incompatible string table extensions.

       o   OSF/1 supports both the SVr4 set and the AIX extensions.


PORTABILITY

       Do  not  count  on  compiled  (binary)  terminfo entries being portable
       between commercial Unix  systems.   At  least  two  implementations  of
       terminfo (those of HP-UX and AIX) diverged from those of other System V
       Unices after SVr1, adding extension capabilities to  the  string  table
       that  (in  the  binary format) collide with subsequent System V and XSI
       Curses extensions.


AUTHORS

       Zeyd M. Ben-Halim, Eric S. Raymond, Thomas E. Dickey.  Based on pcurses
       by Pavel Curtis.


SEE ALSO

       infocmp(1m),     tabs(1),    tic(1m),    curses(3x),    curs_color(3x),
       curs_terminfo(3x), curs_variables(3x),  printf(3),  term_variables(3x),
       term(5), user_caps(5)



ncurses 6.4                       2024-01-13                       terminfo(5)